Computer Vision Toolbox™
User's Guide

<

MATLAB&SIMULINK

R2020a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Computer Vision Toolbox™ User's Guide
© COPYRIGHT 2004-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

July 2004
October 2004
March 2005
September 2005
November 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020

First printing
Second printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 14)
Revised for Version 1.0.1 (Release 14SP1)
Revised for Version 1.1 (Release 14SP2)
Revised for Version 1.2 (Release 14SP3)
Revised for Version 2.0 (Release 14SP3+)
Revised for Version 2.1 (Release 2006a)
Revised for Version 2.2 (Release 2006b)
Revised for Version 2.3 (Release 2007a)
Revised for Version 2.4 (Release 2007b)
Revised for Version 2.5 (Release 2008a)
Revised for Version 2.6 (Release 2008b)
Revised for Version 2.7 (Release 2009a)
Revised for Version 2.8 (Release 2009b)
Revised for Version 3.0 (Release 2010a)
Revised for Version 3.1 (Release 2010b)
Revised for Version 4.0 (Release 2011a)
Revised for Version 4.1 (Release 2011b)
Revised for Version 5.0 (Release 2012a)
Revised for Version 5.1 (Release R2012b)
Revised for Version 5.2 (Release R2013a)
Revised for Version 5.3 (Release R2013b)
Revised for Version 6.0 (Release R2014a)
Revised for Version 6.1 (Release R2014b)
Revised for Version 6.2 (Release R2015a)
Revised for Version 7.0 (Release R2015b)
Revised for Version 7.1 (Release R2016a)
Revised for Version 7.2 (Release R2016b)
Revised for Version 7.3 (Release R2017a)
Revised for Version 8.0 (Release R2017b)
Revised for Version 8.1 (Release R2018a)
Revised for Version 8.2 (Release R2018b)
Revised for Version 9.0 (Release R2019a)
Revised for Version 9.1 (Release R2019b)
Revised for Version 9.2 (Release R2020a)

Contents

Featured Examples

1]

Localize and Read Multiple Barcodes inImage 1-2
Monocular Visual Odometry 1-22
Track Vehicles Using Lidar: From Point Cloud to Track List 1-35
Semantic Segmentation Using Dilated Convolutions 1-55
Define Custom Pixel Classification Layer with Tversky Loss 1-59
TrackaFaceinScene 1-66
Create 3-D Stereo Display 1-71
Measure Distance from Stereo CameratoaFace 1-72
Reconstruct 3-D Scene from DisparityMap 1-74
Visualize Stereo Pair of Camera Extrinsic Parameters 1-77

Remove Distortion from an Image Using the Camera Parameters Object
... 1-80

Point Cloud Processing

2|

Getting Started with Point Clouds Using Deep Learning
Import Point Cloud Data,
Augment Data
Encode Point Cloud Data to Image-like Format
Train a Deep Learning Classification Network with Encoded Point Cloud

Data . . 2-3

Point Cloud Registration Overview
Point Cloud Registration Process o....
Point Cloud Registration Methods
TIPS o e e

The PLY Format e
File Header e

vi

Contents

Data . . e 2-9
Common Elements and Properties 2-10

Using the Installer for Computer Vision System Toolbox

3|

Product

Install Computer Vision Toolbox Add-on Support Files 3-2
Install OCR Language Data Files 3-3
Installation e 3-3
Pretrained Language Data and the ocr function 3-3
Install and Use Computer Vision Toolbox OpenCV Interface 3-6
Installation e 3-6
Support Package Contents 3-6
Create MEX-File from OpenCVC++file 3-7

Use the OpenCV Interface C+4+ API 3-7
Create Your Own OpenCV MEXfiles 3-8

Run OpenCV Examples 3-8

Install and Use Computer Vision Toolbox OpenCV Interface for Simulink

... 3-10
Installation 3-10
Import OpenCV Code into Simulink 3-10
Limitationst 3-18

Smile Detection by Using OpenCV Code in Simulink 3-19
Required Products 3-19
Set UpYour C++ Compiler 3-19
Model Description 3-19
Step 1: Import OpenCV Function to Create a Simulink Library 3-20
Step 2: Use Generated Subsystem in Simulink Model 3-25
Step 3: Simulate the Smile Detector 3-26
Step 4: Generate C++ Code from the Smile Detector Model 3-26
Deploy the Smile Detector on the Raspberry Pi Hardware 3-27
Convert RGB Image to Grayscale Image by Using OpenCV Importer ... 3-29
Required Products 3-29
SetUpYour C++4+ Compiler 3-29
Model DesCTiptiont 3-29
Step 1: Import OpenCV Function to Create a Simulink Library 3-30
Step 2: Use Generated Subsystem in Simulink Model 3-33
Step 3: Simulate the RGB to Gray Convertor 3-34
Draw Different Shapes by Using OpenCV Code in Simulink 3-36
Required Products 3-36
SetUp Your C++ Compiler 3-36
Model Descriptiont 3-36
Step 1: Import OpenCV Function to Create a Simulink Library 3-37
Step 2: Use Generated Subsystem in Simulink Model 3-38
Draw Atom on Image by Using C CallerBlock 3-38

Input, Output, and Conversions

4

ExporttoVideo Files 4-2
Setting Block Parameters for this Example 4-2
Configuration Parameters i 4-3

Import from Video Files 4-4
Setting Block Parameters for this Example 4-4
Configuration Parameters 4-5

Batch Process Image Files 4-6
Configuration Parameters 4-6

Convert R'G'B' to IntensityImages 4-7

Process Multidimensional Color Video Signals 4-10

Video Formats 4-12
Defining Intensityand Color 4-12
Video Data Stored in Column-Major Format 4-12

Image Formats i 4-13
Binary Imagest e 4-13
Intensity Imageso oot e 4-13
RGBIMaAgES . .ot e et e 4-13

S|

6/

Display, Stream, and Preview Videos 5-2
View Streaming Videoin MATLAB 5-2
Preview Video in MATLAB 5-2
View Video in Simulink 5-2

Draw Shapesand Lines 5-4
Rectangle 5-4
Lineand Polyline i 5-4
POlygon . .. e 5-6
CIrCle . .o 5-6

Registration and Stereo Vision

Fisheye Calibration Basics 6-2
Fisheye Camera Model i, 6-3
Fisheye Camera Calibration in MATLAB 6-4

viii

Contents

7

Single Camera Calibrator App 6-8
Camera Calibrator OVerviewttt 6-8
Single Camera Calibration 6-8
Open the Camera Calibrator 6-9
Prepare the Pattern, Camera, and Images 6-9
Add Images and Select Camera Model 6-11
Calibrate 6-15
Evaluate Calibration Results i 6-17
Improve Calibration i 6-20
Export Camera Parameters 6-23

Stereo Camera Calibrator App 6-25
Stereo Camera Calibrator Overview 6-25
Stereo Camera Calibration 6-25
Open the Stereo Camera Calibrator 6-26
Prepare Pattern, Camera, andImages 6-26
AddImage Pairs i e 6-29
Calibrate 6-31
Evaluate Calibration Results 6-31
Improve Calibration 6-35
Export Camera Parameters 6-37

What Is Camera Calibration? 6-39
Camera Models i e 6-39
Pinhole Camera Model 6-40
Camera Calibration Parameters 6-41
Distortion in Camera Calibration 6-42

Structure from Motion 6-45
Structure from Motion from Two Views 6-45
Structure from Motion from Multiple Views 6-46

Object Detection

Getting Started with SSD Multibox Detection 7-2
Predict Objectsinthe Image 7-2
Transfer Learningttt 7-3
Design an SSD Detection Network 7-3
Train an Object Detector and Detect Objects with an SSD Model 7-4
Code Generation it e 7-4
Label Training Data for Deep Learning 7-4

Getting Started with Object Detection Using Deep Learning 7-6
Create Training Data for Object Detection 7-6
Create Object Detection Network 7-7
Train Detector and Evaluate Results 7-7
Detect Objects Using Deep Learning Detectors 7-7

How Labeler Apps Store Exported Pixel Labels 7-9
Location of Pixel Label Data Folder 7-9
View Exported Pixel Label Data 7-9

Examples o

Anchor Boxes for Object Detection
What Isan Anchor Box? e
Advantage of Using Anchor Boxes
How Do Anchor Boxes Work?
AnchorBox Size

Getting Started with YOLO V2
Predicting ObjectsintheImage
Transfer Learningttt e
Design a YOLO v2 Detection Network
Train an Object Detector and Detect Objects with a YOLO v2 Model
Code Generationi ittt
Label Training Data for Deep Learning

Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN
Object Detection Using R-CNN Algorithms
Comparison of R-CNN Object Detectors
Transfer Learningt e
Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model
Label Training Data for Deep Learning

Getting Started with Semantic Segmentation Using Deep Learning . . .
Train a Semantic Segmentation Network
Label Training Data for Semantic Segmentation

Training Data for Object Detection and Semantic Segmentation

Create Automation Algorithm for Labeling
Create New Algorithm
Import Existing Algorithm,
Custom Algorithm Execution

Label Pixels for Semantic Segmentation
Start Pixel Labeling i
Label Pixels Using Flood Fill Tool,
Label Pixels Using Smart Polygon Tool
Label Pixels Using Polygon Tool couoiou...
Label Pixels Using Assisted Freehand Tool
Replace Pixel Labels i
Refine Labels Using Brush Tool vu....
Visualize Pixel Labels
TIPS e e

Get Started with the Image Labeler
Load Unlabeled Data i,
Create Label Definitions
Label Ground Truth
Export Labeled Ground Truth
Save App SeSSION e

Choose an App to Label Ground TruthData

7-10

7-14
7-14
7-14
7-15
7-18

7-19
7-19
7-20
7-20
7-21
7-21
7-21

7-23
7-23
7-24
7-25
7-25
7-27

7-29
7-29
7-29

7-31

7-35
7-35
7-36
7-36

7-39
7-39
7-40
7-41
7-43
7-44
7-45
7-45
7-46
7-47

7-49
7-49
7-49
7-56
7-58
7-60

7-62

ix

Get Started with the Video Labeler 7-64

Load Unlabeled Datat 7-64
Set Time Intervalto Label 7-64
Create Label Definitions 7-65
Label Ground Truth, 7-72
Export Labeled Ground Truth 7-74
Label Data . ..o 7-76
Save App SESSION . ..ot 7-77
Use Custom Image Source Reader for Labeling 7-79
Create Custom Reader Functionvvvnn.... 7-79
Import Data Source into Video Labeler App 7-79
Import Data Source into Ground Truth LabelerApp 7-80
Use Sublabels and Attributes to Label Ground Truth Data 7-81
When to Use Sublabels vs. Attributes 7-81
Draw Sublabels e 7-81
Copy and Paste Sublabels 7-82
Delete Sublabels 7-83
Sublabel Limitations 7-84
Temporal Automation Algorithms 7-85
Create Temporal Automation Algorithm 7-85
Run Temporal Automation Algorithm 7-85
View Summary of Ground Truth Labels 7-87
View Label Summary i 7-87
Compare Selected Labels 7-89
Share and Store Labeled Ground TruthData 7-91
Share Ground Truth 7-91
Move Ground Truth 7-94
Store Ground Truth 7-95
Keyboard Shortcuts and Mouse Actions for Image Labeler 7-97
Label Definitions 7-97
Image Browsing and Selection, 7-97
Labeling Window i e 7-97
Polyline Drawingttt 7-98
Polygon Drawingt 7-98
ZOOMNG . o et e e 7-99
ADD SESSIONS . . oot 7-99
Keyboard Shortcuts and Mouse Actions for Video Labeler 7-100
Label Definitions 7-100
Frame Navigation and Time Interval Settings 7-100
Labeling Window e 7-100
Polyline Drawing e 7-101
Polygon Drawingttt e 7-101
ZOOMINg . .ttt e 7-102
ADD SESSIONS . .. e 7-102
Point Feature Types i 7-103
Functions That Return Points Objects 7-103
Functions That Accept Points Objects 7-105

X Contents

8

Local Feature Detection and Extraction 7-109
What Are Local Features?, 7-109
Benefits and Applications of Local Features 7-109
What Makes a Good Local Feature? 7-110
Feature Detection and Feature Extraction 7-110
Choose a Feature Detector and Descriptor 7-111
Use Local Features, 7-112
Image Registration Using Multiple Features 7-114

Train a Cascade Object Detector 7-122
Why Train a Detector? 7-122
What Kinds of Objects Can You Detect? 7-122
How Does the Cascade Classifier Work? 7-122
Create a Cascade Classifier Using the trainCascadeObjectDetector . . . 7-123
Troubleshooting 7-126
Exampleso 7-128
Train Stop Sign Detector 7-132

Train Optical Character Recognition for Custom Fonts 7-135
Openthe OCRTrainer App . ..o oo i it e e e e e 7-135
Train OCR e 7-135
App Controls 7-137

Troubleshoot ocr FunctionResults 7-139
Performance Options with the ocr Function 7-139

Create a Custom Feature Extractor 7-140
Example of a Custom Feature Extractor 7-140

Image Retrieval with Bag of Visual Words 7-143
Retrieval System Workflow 7-144
Evaluate Image Retrieval 7-145

Image Classification with Bag of Visual Words 7-146
Step 1: Set Up Image Category Sets 7-146
Step 2: Create Bagof Features 7-146
Step 3: Train an Image Classifier With Bag of Visual Words 7-147
Step 4: Classify an Image or Image Set 7-148

Motion Estimation and Tracking

Multiple Object Tracking 8-2
Detectionot 8-2
Prediction 8-2
Data ASSOCIationt e 8-3
Track Management i 8-14

Video Mosaicking 8-5

Pattern Matching e 8-10

xi

xii

Pattern Matching 8-15

Geometric Transformations

9

Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods
Nearest Neighbor Interpolation
Bilinear Interpolation
Bicubic Interpolation

Filters, Transforms, and Enhancements

10|

Adjust the Contrast of IntensityImages 10-2
Adjust the Contrast of ColorImages 10-6
Remove Salt and Pepper Noise from Images 10-10
SharpenanImage i 10-14

Statistics and Morphological Operations

11|

Correct Nonuniform INlumination 11-2

Count ObjectsinanImage 11-8

12

Fixed-Point Signal Processing 12-2
Fixed-Point Features 12-2
Benefits of Fixed-Point Hardware 12-2
Benefits of Fixed-Point Design with System Toolboxes Software 12-2

Fixed-Point Concepts and Terminology 12-4
Fixed-Point Data Types oottt e 12-4
Scaling e 12-5
Precisionand Range 12-6

Contents

Arithmetic Operations 12-8

Modulo Arithmetic 12-8
Two's Complement 12-8
Addition and Subtraction 12-9
Multiplication 12-10
CastS vt 12-12
Fixed-Point Support for MATLAB System Objects 12-15
Getting Information About Fixed-Point System Objects 12-15
Setting System Object Fixed-Point Properties 12-15
Specify Fixed-Point Attributes forBlocks 12-17
Fixed-Point Block Parameters 12-17
Specify System-Level Settings 12-19
InheritviaInternal Rule 12-19
Specify Data Types for Fixed-Point Blocks 12-26

Code Generation and Shared Library

13|

Simulink Shared Library Dependencies 13-2
Accelerating Simulink Models 13-3

Portable C Code Generation for Functions That Use OpenCV Library . . 13-4
Limitations 13-4

xiii

Featured Examples

“Localize and Read Multiple Barcodes in Image” on page 1-2

“Monocular Visual Odometry” on page 1-22

“Track Vehicles Using Lidar: From Point Cloud to Track List” on page 1-35
“Semantic Segmentation Using Dilated Convolutions” on page 1-55
“Define Custom Pixel Classification Layer with Tversky Loss” on page 1-59
“Track a Face in Scene” on page 1-66

“Create 3-D Stereo Display” on page 1-71

“Measure Distance from Stereo Camera to a Face” on page 1-72
“Reconstruct 3-D Scene from Disparity Map” on page 1-74

“Visualize Stereo Pair of Camera Extrinsic Parameters” on page 1-77
“Remove Distortion from an Image Using the Camera Parameters Object” on page 1-80

1 reatured Examples

Localize and Read Multiple Barcodes in Image

1-2

This example shows how to use the readBarcode function from the Computer Vision Toolbox™ to
detect and decode 1-D and 2-D barcodes in an image. Barcodes are widely used to encode data in a
visual, machine-readable format. They are useful in many applications such as item identification,
warehouse inventory tracking, and compliance tracking. For 1-D barcodes, the readBarcode
function returns the location of the barcode endpoints. For 2-D barcodes, the function returns the
locations of the finder patterns. This example uses two approaches for localizing multiple barcodes in
an image. One approach is clustering-based, which is more robust to different imaging conditions and
requires the Statistics and Machine Learning Toolbox™. The second approach uses a segmentation-
based workflow and might require parameter tuning based on the imaging conditions.

Barcode Detection using the readBarcode Function
Read a QR code from an image.
I = imread("barcodeQR.jpg");

% Search the image for a QR Code.
[msg, ~, loc] = readBarcode(I);

% Annotate the image with the decoded message.
xyText = loc(2,:);
Imsg = insertText(I, xyText, msg, "BoxOpacity", 1, "FontSize", 25);

% Insert filled circles at the finder pattern locations.
Imsg = insertShape(Imsg, "FilledCircle", [loc,
repmat (10, length(loc), 1)1, "Color", "red", "Opacity", 1);

% Display image.
imshow(Imsg)

Localize and Read Multiple Barcodes in Image

Sample text encoded as a QR code for use with the "readBarcode” function.

Read a 1-D barcode from an image.
I = imread("barcodelD.jpg");

% Read the 1-D barcode and determine the format..
[msg, format, locs] = readBarcode(I);

% Display the detected message and format.
disp("Detected format and message: " + format + ", " + msg)

Detected format and message: EAN-13, 1234567890128

% Insert a line to show the scan row of the barcode.

xyBegin = locs(1l,:); imSize = size(I);

I = insertShape(I,"Line",[1 xyBegin(2) imSize(2) xyBegin(2)],
"LineWidth", 7);

% Insert markers at the end locations of the barcode.
I = insertShape(I, "FilledCircle", [locs,
repmat (10, length(locs), 1)1, "Color", "red", "Opacity", 1);

1-3

1 reatured Exa mples

% Display image.
imshow(I)

R
I

1

\|\|\\\\\\\

Wl
[N

1

Improving Barcode Detection

For a successful detection, the barcode must be clearly visible. The barcode must also be as closely
aligned to a horizontal or vertical position as possible. The readBarcode function is inherently more
robust to rotations for 2-D or matrix codes than it is to 1-D or linear barcodes. For example, the
barcode cannot be detected in this image.

I = imread("rotatedlDBarcode.jpg");

% Display the image.
imshow(I)

1-4

Localize and Read Multiple Barcodes in Image

hE% = = Ry N i AT
W @@ {\60‘“ @t \}"’0{\606:9&6* %
& @8 4o® @ @0 a0® ef

o PR\ SRPA SR A S
@ 60((\ \6"‘ T 060 i\ *\‘(0¢0 6\\6 e
W @ o ot 12 &0 .q(\‘\'a LAy o i
60((\ S A @ (\ﬁo \e?f‘ A G O
\S S

AR o i i
2 od\ \eﬁ‘ @ A0 4] X
5 S CE N A C N
6‘\'61‘13*‘@(;&\60@6‘\6* i ‘."3‘0660(0&'@1'\' ‘90669(0\\@*\"&
96600 6‘@@.*"‘ 5 ENICY et @ 60«\@@
S ! @ oo e @ oo
,@1- (3@{\60 d\\e 6 ‘9\:\ éo((\ \e-*'\‘\ {3‘(\
-;\50({\ ey Q B <@ g0 e
@ 0’3’0& 6‘\6+ st %g S (a“(\éo‘“
2
& R Qe & © et
s @™ A @ ot
@ O o®
LSS

() o X
@ a0 »g,‘f:“ “b‘\ 60‘0 \,e'fsk e (\¢0® @b S @
@& oo @ @ o et @ o e
""“@0 &‘a{:’-‘ @ o0 ®xe?"+,“ @ &0
B A0 @ (B 40" ae o
; & G\\..m\‘ c‘\d\({o xPj“\ ‘

% Pass the image to the readBarcode function.
readBarcode(I)

ans =

Rotate the image using the imrotate so that the barcode is roughly horizontal. Use readBarcode
on the rotated image.

% Rotate the image by 30 degrees clockwise.
Irot = imrotate(I, -30);

% Display the rotated image.
imshow(Irot)

1 Featured Examples

Random text, random text, Random text, random text, raradom;e:tt,
random text, random text, random text, random text, random tzxtl
random text, random text, random text, random text, random -

text, random text, random texi’
random text, random text, random text, random Glullisaln,

random text, random text, ki e,
random text, random text, Ghrabed e,
random text, random text,

random text, random text,

e random text, random text,

i random text, random text,

R ’i\&‘ﬁ ;2232?1 iz):; 0 12345 67890 5 random text, random text,
exL, s

Random text, random text, random text, random :GX;L i :ﬁgzg :zﬁ
random text, random text, random text, random &‘X{ U L
random text, random text, random text, random itex{ A s
random text, random text, random text, random text,

% Pass the rotated image to the readBarcode function.
readBarcode(Irot)

Detect Multiple Barcodes

The readBarcode function detects only a single barcode in each image. In order to detect multiple
barcodes, you must specify a region-of-interest (ROI). To specify an ROI, you can use the
drawrectangle function to interactively determine the ROIs. You can also use image analysis
techniques to detect the ROI of multiple barcodes in the image.

1-6

Localize and Read Multiple Barcodes in Image

&
File
SR

)

Edit View

Interactively determine ROIs

Random text, random text,
random text,
random text,
random text,
random text,
random text,
random text,
random text,
random text,
random text,
random text,
random text,
random text,
random text,

Insert

2 0EE & [E

Tools

random text,
random text,
random tex
random text,
random text,
random text,
random text,
random teit,
random tekxt,

random tet,

Figure 2
Desktop Window Help

random text, random text, random text,
random text, random text, random text,

LT

12345 " 67890

random text, Random text random text random text

random tg

random text;

random text, random text

Random text. random

random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,

tex

random text random text random text
random text, random text, random text,

MU

567891 " 324562

t,

random text, random text,
random text, random text, Random text, random text, random text,

random text, random text, random text, random text, random text,
random text, random text, random text, random text, random text,
random text, random text, random text, random text, random text,

Random text, random text,

andom text, random text,
random text, random text,
random text, random text,
random text, random text
random text, ran

AU A

random text, random text
random text, random text Random text, random text, random text,

random text, random text,

random text, random text, random text,

random text, random text, random text, random text, random text,
random text, random text, random text, random text, random text,

I = imread("multiplelDBarcodes.jpg");

Random text, random text, random text,

Random text, random text,

random text, random text,
random text, random text,
indom text, random text,

random text, random text,
ranidom text, random text,
dom text, random text,
random text, random text,
random text, random text

Random text, random text,

random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,

' random text, random text,

Random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,

1-7

1 reatured Examples

1-8

Use the drawrectangle function to draw and obtain rectangle parameters.
roil = drawrectangle;
pos = roil.Position;

% ROIs obtained using drawrectangle
roi = [350 190 690 370

350 640 690 360

350 1090 690 3401;

imSize = size(I);

for i = 1:size(roi,1)
[msg, format, locs] = readBarcode(I, roi(i,:));
disp("Decoded format and message: " + format + ", " + msg)

% Insert a line to indicate the scan row of the barcode.

xyBegin = locs(1,:);

I = insertShape(I,"Line",[1 xyBegin(2) imSize(2) xyBegin(2)],
"LineWidth", 7);

% Annotate image with decoded message.
I = insertText(I, xyBegin, msg, "BoxOpacity", 1, "FontSize", 30);
end

Decoded format and message: UPC-A, 012345678905
Decoded format and message: EAN-13, 4567891324562
Decoded format and message: CODE-39, ABC-123

imshow(I)

Localize and Read Multiple Barcodes in Image

Random text, random text,

random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random tevt randnm tovt
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text

Random text, random text,

random text, random text,
random text, random text,
randnm tavt random +out
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,

Random text, random text,
random text, random text,
random text, random text,
random text. randnm tavt
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,

Random text, random text, random text, Random text, random text,
random text, random text, random text, random text, random text,
random text, random text, random text, random text, random text,
random text, random text, random text, random text, random text,

random text, random text,
random text, random text,
random text, random text,
Tandoin IGAL 1aldui XL,
012345678905, ” “"I random text, random text,
random text, random text

0 I “ 'i 5?&'&*!]'67890 random text: random text:

Random text, random text, random text, random text, random text,
random text, random text, random text, random text, random text,
random text, random text, random text, random text, random text,
random text, random text, random text, random text, random text

random text, random text,

I I"I l" " Ill, random text, random text,

random text, random text,
4567891324562 I m“ “

" ” Random text, random text,

random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,

567891324562

Random text, random text, random text,
random text, random text, random text,
random text, random text, random text,
random text, random text, random text,

Random text, random text,

random text, random text,

PV ARMNAIY o s e
random text, random text,

||| ABC-123 " lll "“ll HIII ""l mt ,"l random text, random text,
ABC-123 random text, random text,

random text, random text,
random text, random text,
random text, random text,
random text, random text,
random text, random text,

Random text, random text, random text,
random text, random text, random text,
random text, random text, random text,
random text, random text, random text,

Image analysis to determine ROIs

Use image analysis techniques to automate the detection of mpltiplg barcodes. This.requires
localizing multiple barcodes in an image, determining their or1ent§t10n, and correctmg for the.
orientation. Without preprocessing, barcodes cannot be detected in the image containing multiple

rotated barcodes.

1-9

1 reatured Examples

I = imread("multiplelDBarcodesRotated.jpg");
Igray = rgb2gray(I);

% Display the image.
imshow(I)

& & Qﬁ' & SR
< a
& . 9
be >+ Q- b
> O @ n N
I ¢ 60@5' \g?"\ s @(\ (\bo
SIS G
@ &
&L L@ N

% Pass the unprocessed image to the readBarcode function.
readBarcode(Igray, '1D')

ans =

Detection on the unprocessed image resulted in no detection.
Step 1: Detect candidate regions for the barcodes using MSER
Detect regions of interest in the image using the detectMSERFeatures function. Then, you can

eliminate regions of interest based on a specific criteria such as the aspect ratio. You can use the
binary image from the filtered results for further processing.

1-10

Localize and Read Multiple Barcodes in Image

% Detect MSER features.
[~, cc] = detectMSERFeatures(Igray);

% Compute region properties MajorAxisLength and MinorAxisLength.
regionStatistics = regionprops(cc, 'MajorAxisLength', 'MinorAxislLength');

% Filter out components that have a low aspect ratio as unsuitable

% candidates for the bars in the barcode.

minAspectRatio = 10;

candidateRegions = find(([regionStatistics.MajorAxisLength]./[regionStatistics.MinorAxisLength])

% Binary image to store the filtered components.
BW = false(size(Igray));

% Update the binary image.

for i = 1:length(candidateRegions)
BW(cc.PixelIdxList{candidateRegions(i)}) = true;

end

% Display the binary image with the filtered components.

imshow (BW)
title("Candidate regions for the barcodes")

1-11

1 reatured Exa mples

Step 2: Extract barcode line segments using hough transform

Detect prominent edges in the image using the edge function. Then use the hough transform to find
lines of interest. The lines represent possible candidates for the vertical bars in the barcode.

% Perform hough transform.
BW = edge(BW, 'canny');
[H,T,R] = hough(BW);

% Display the result of the edge detection operation.
imshow (BW)

1-12

Localize and Read Multiple Barcodes in Image

% Determine the size of the suppression neighborhood.
reductionRatio = 500;

nhSize = floor(size(H)/reductionRatio);

idx = mod(nhSize,2) < 1;

nhSize(idx) = nhSize(idx) + 1;

% Identify the peaks in the Hough transform.
P = houghpeaks(H, length(candidateRegions), 'NHoodSize',nhSize);

% Detect the lines based on the detected peaks.
lines = houghlines(BW,T,R,P);

% Display the lines detected using the houghlines function.
Ihoughlines = ones(size(BW));

% Start and end points of the detected lines.
startPts = reshape([lines(:).pointl], 2, length(lines))"';
endPts = reshape([lines(:).point2], 2, length(lines))"';

1-13

1 reatured Examples

Ihoughlines = insertShape(Ihoughlines, 'Line', [startPts, endPts],
'LineWidth', 2, 'Color', 'green');

% Display the original image overlayed with the detected 1lines.
Ibarlines = imoverlay(I, ~Ihoughlines(:,:,1));
imshow(Ibarlines)

Step 3: Localize barcodes in image

After extracting the line segments, two methods are presented for localizing the individual barcodes
in the image:

* Method 1: A clustering-based technique that uses functionalities from the Statistics and Machine
Learning Toolbox™ to identify individual barcodes. This technique is more robust to outliers that
were detected using the image analysis techniques above. It can also be extended to a wide range
of imaging conditions without having to tune parameters.

* Method 2: A segmentation-based workflow to separate the individual barcodes. This method uses
other image analysis techniques to localize and rotation correct the extracted barcodes. While this
works fairly well, it might require some parameter tuning to prevent detection of outliers.

1-14

Localize and Read Multiple Barcodes in Image

Method 1: Clustering based workflow
There are two steps in this workflow:
1. Determine bisectors of barcode line segments

While it is common practice to directly use the lines (that were obtained using the Hough transform)
to localize the barcode, this method uses the lines to further detect the perpendicular bisectors for
each of the lines. The bisector lines are represented as points in cartesian space, which makes them
suitable for identifying individual barcodes. Using the bisectors make the detection of the individual
barcodes more robust, since it results in less misclassifications of lines that are similar but belonging
to different barcodes.

2. Perform clustering on the bisectors to identity the individual barcodes

Since all of the bars in a barcode are approximately parallel to each other, the bisectors of each of
these bars should ideally be the same line, and their corresponding points should therefore cluster
around a single point. In practice, these bisectors will vary from segment to segment, but still remain
similar enough to allow the use of a density-based clustering algorithm. The result of performing this
clustering operation is a set of clusters, each of which points to a separate barcode. This example
uses the dbscan function, which does not require prior knowledge of the number of clusters. The
different clusters (barcodes) are visualized in this example.

The example checks for a Statistics and Machine Learning Toolbox™ license. If a license is found, the
example uses the clustering method. Otherwise, the example uses the segmentation method.

useClustering = license('test','statistics toolbox');

if useClustering
[boundingBox, orientation, Iclusters] = clusteringLocalization(lines, size(I));

% Display the detected clusters.

imshow(Iclusters)
else

disp("The clustering based workflow requires a license for the Statistics and Machine Learnil
end

1-15

1 reatured Examples

1-16

A

N

Method 2: Segmentation based workflow

Having removed the background noise and variation, the detected vertical bars are grouped into
individual barcodes using morphological operations, like imdilate. The example uses the
regionprops function to determine the bounding box and orientation for each of the barcodes. The
results are used to crop the individual barcodes from the original image and to orient them to be
roughly horizontal.

if ~useClustering
[boundingBox, orientation, Idilated] = segmentationLocalization(Ihoughlines);

% Display the dilated image.

imshow(Idilated)
end

Step 4: Crop the Barcodes and correct their rotation

The barcodes are cropped from the original image using the bounding boxes obtained from the
segmentation. The orientation results are used to align the barcodes to be approximately horizontal.

Localize and Read Multiple Barcodes in Image

% Localize and rotate the barcodes in the image.
correctedImages = cell(l, length(orientation));

% Store the cropped and rotation corrected images of the barcodes.
for i = 1:length(orientation)

I = insertShape(I, 'Rectangle', boundingBox(i,:), 'LineWidth',3, 'Color', 'red');
if orientation(i) > 0

orientation(i) = -(90 - orientation(i));
else

orientation(i) = 90 + orientation(i);
end

% Crop the barcode from the original image and rotate it using the

% detected orientation.

correctedImages{i} = imrotate(imcrop(Igray,boundingBox(i,:)), orientation(i));
end

% Display the image with the localized barcodes.
imshow(I)

1-17

1 reatured Examples

1-18

Step 5: Detect barcodes in the cropped and rotation corrected images

The cropped and rotation corrected images of the barcodes are then used with the readBarcode
function to decode them.

% Pass each of the images to the readBarcode function.
for i = 1l:length(correctedImages)
[msg, format, ~] = readBarcode(correctedImages{i}, '1D');
disp("Decoded format and message: " + format + ", " + msqg)
end

Decoded format and message: UPC-A, 012345678905
Decoded format and message: EAN-13, 4567891324562
Decoded format and message: CODE-39, ABC-123

This example showed how the readBarcode function can be used to detect, decode and localize
barcodes in an image. While the function works well when the alignment of the barcodes is roughly
horizontal or vertical, it needs additional pre-processing when the barcodes appear rotated. The
preprocessing steps detailed above is a good starting point to work with multiple barcodes that are
not aligned in an image.

Localize and Read Multiple Barcodes in Image

Supporting Functions

clusteringLocalization uses a clustering-based workflow to localize individual barcodes.

function [boundingBox, orientation, Iclusters] = clusteringLocalization(lines, imSize)

% Table to store the properties of the bisectors of the detected lines.
linesBisector = array2table(zeros(length(lines), 4), 'VariableNames', {'theta', 'rho', 'x', 'y'}

% Use the orientation values of the lines to determine the orientation.
% values of the bisectors

idxNeg find([lines.theta] < 0);

idxPos find([lines.theta] >= 0);

negAngles = 90 + [lines(idxNeg).thetal;
linesBisector.theta(idxNeg) = negAngles;

posAngles = [lines(idxPos).theta] - 90;
linesBisector.theta(idxPos) = posAngles;

% Determine the midpoints of the detected lines.
midPts = zeros(length(lines),2);

% Determine the 'rho' values of the bisectors.
for i = 1l:length(lines)
midPts(i,:) = (lines(i).pointl + lines(i).point2)/2;
linesBisector.rho(i) = abs(midPts(i,2) - tand(lines(i).theta) * midPts(i,1))/...
((tand(lines(i).theta)”2 + 1) ©~ 0.5);
end

% Update the [x,y] locations of the bisectors using their polar
% coordinates.
[linesBisector.x, linesBisector.y] = pol2cart(deg2rad(linesBisector.theta),linesBisector.rho, 'ro

% Store the [x,y] data of the bisectors to be used for clustering.
X = [linesBisector.x,linesBisector.y];

Get pairwise distance between the points
= pdist2(X,X);

O o°

Perform density-based spatial clustering to separate the different
barcodes in the image.

searchRadius = max(imSize/5);

minPoints = 10;

idx = dbscan(D,searchRadius, minPoints);

o o°

% Identify the number of clusters (barcodes).
numClusters = unique(idx(idx > 0));

% Store the endpoints of the detected lines.

1-19

1 reatured Examples

dataXY = cell(1l, length(numClusters));

% Image to show the detected clusters (barcodes).
Iclusters = ones(imSize);

for 1 = 1:length(numClusters)

classIdx = find(idx == 1i);
rgbColor = rand(1,3);
startPts = reshape([lines(classIdx).pointl], 2, length(classIdx))"’;

endPts reshape([lines(classIdx).point2], 2, length(classIdx))"’;

% Insert lines corresponding to the current cluster (barcode).

Iclusters = insertShape(Iclusters, 'Line', [startPts, endPts],
'LineWidth', 2, 'Color', rgbColor);

% Update the endpoints of the lines in each cluster (barcode).
dataXY{i} = [startPts; endPts];

orientation
boundingBox

zeros(1l,length(numClusters));
zeros(length(numClusters), 4);

% Padding the cropped images of barcodes.
padding = 40;

% Determine the ROI and orientation of the individual clusters (barcodes).
for 1 = 1:length(numClusters)

% Bounding box coordinates with padding.

x1 = min(dataXY{i}(:,1)) - padding;
x2 = max(dataXY{i}(:,1)) + padding;
yl = min(dataXY{i}(:,2)) - padding;
y2 = max(dataXY{i}(:,2)) + padding;

boundingBox(i,:) = [x1, yl, x2-x1, y2-yl];

% Orientation of the barcode.
orientation(i) = mean(linesBisector.theta(idx == 1i));

end
end
segmentationLocalization uses a segmentation-based workflow to localize individual barcodes.

function [boundingBox, orientation, Idilated] = segmentationLocalization(Ihoughlines)

% Create binary image with the detected lines.
Ibw = ~Ihoughlines(:,:,1);

1-20

Localize and Read Multiple Barcodes in Image

Ibw(Ibw > 0) = true;

% Dilate the image using a disk structuring element.

diskRadius = 20; % Might need tuning depending on the input image.
se = strel('disk', diskRadius);

Idilated = imdilate(Ibw, se);

% Compute region properties Orientation and BoundingBox.
regionStatistics = regionprops(Idilated, 'Orientation', 'BoundingBox');

% Padding for the cropped images of barcodes.
padding = 40;

boundingBox = zeros(length(regionStatistics), 4);

for idx = 1l:length(regionStatistics)
boundingBox(idx,:) = regionStatistics(idx).BoundingBox;
% Bounding box coordinates with padding.
boundingBox (idx, 1) boundingBox(idx,1) - padding;
boundingBox(idx, 2 boundingBox(idx, 2 padding;

))
boundingBox(idx, 3) boundingBox(idx,3) + 2*padding;
boundingBox (idx,4) boundingBox(idx,4) + 2*padding;

end

orientation = [regionStatistics(:).0Orientation];
end

References

[1] Creusot, Clement, et al. "Real-time Barcode Detection in the Wild." IEEE Winter Conference on
Applications of Computer Vision, 2015.

1-21

1 reatured Exa mples

Monocular Visual Odometry

1-22

Visual odometry is the process of determining the location and orientation of a camera by analyzing a
sequence of images. Visual odometry is used in a variety of applications, such as mobile robots, self-
driving cars, and unmanned aerial vehicles. This example shows you how to estimate the trajectory of
a single calibrated camera from a sequence of images.

Overview

This example shows how to estimate the trajectory of a calibrated camera from a sequence of 2-D
views. This example uses images from the New Tsukuba Stereo Dataset created at Tsukuba
University's CVLAB. (https://cvlab.cs.tsukuba.ac.jp). The dataset consists of synthetic images,
generated using computer graphics, and includes the ground truth camera poses.

Without additional information, the trajectory of a monocular camera can only be recovered up to an
unknown scale factor. Monocular visual odometry systems used on mobile robots or autonomous
vehicles typically obtain the scale factor from another sensor (e.g. wheel odometer or GPS), or from
an object of a known size in the scene. This example computes the scale factor from the ground truth.

The example is divided into three parts:

1 FEstimating the pose of the second view relative to the first view. Estimate the pose of the
second view by estimating the essential matrix and decomposing it into camera location and
orientation.

2 Bootstrapping estimating camera trajectory using global bundle adjustment. Eliminate
outliers using the epipolar constraint. Find 3D-to-2D correspondences between points
triangulated from the previous two views and the current view. Compute the world camera pose
for the current view by solving the perspective-n-point (PnP) problem. Estimating the camera
poses inevitably results in errors, which accumulate over time. This effect is called the drift. To
reduce the drift, the example refines all the poses estimated so far using bundle adjustment.

3 Estimating remaining camera trajectory using windowed bundle adjustment. With each
new view the time it takes to refine all the poses increases. Windowed bundle adjustment is a
way to reduce computation time by only optimizing the last n views, rather than the entire
trajectory. Computation time is further reduced by not calling bundle adjustment for every view.

Read Input Image Sequence and Ground Truth

This example uses images from the New Tsukuba Stereo Dataset created at Tsukuba University's
CVLAB. If you use these images in your own work or publications, please cite the following papers:

[1] Martin Peris Martorell, Atsuto Maki, Sarah Martull, Yasuhiro Ohkawa, Kazuhiro Fukui, "Towards a
Simulation Driven Stereo Vision System". Proceedings of ICPR, pp.1038-1042, 2012.

[2] Sarah Martull, Martin Peris Martorell, Kazuhiro Fukui, "Realistic CG Stereo Image Dataset with
Ground Truth Disparity Maps", Proceedings of ICPR workshop TrakMark2012, pp.40-42, 2012.

images = imageDatastore(fullfile(toolboxdir('vision'), 'visiondata', 'NewTsukuba'));

% Load ground truth camera poses.
load(fullfile(toolboxdir('vision'), 'visiondata', 'visualOdometryGroundTruth.mat'));

Create a View Set Containing the First View of the Sequence

Use an imageviewset object to store and manage the image points and the camera pose associated
with each view, as well as point matches between pairs of views. Once you populate an

https://home.cvlab.cs.tsukuba.ac.jp/dataset

Monocular Visual Odometry

imageviewset object, you can use it to find point tracks across multiple views and retrieve the
camera poses to be used by triangulateMultiview and bundleAdjustment functions.

% Create an empty imageviewset object to manage the data associated with each view.
vSet = imageviewset;

% Read and display the first image.

Irgb = readimage(images, 1);

player = vision.VideoPlayer('Position', [20, 400, 650, 510]);
step(player, Irgb);

T‘t: Viclea
File To
| q

Processing

Playe = H (=] ” £ |
ols VWiew Playback Help N
9 | E2 | 100% v

RGE480x640 1

% Create the camera intrinsics object using camera intrinsics from the
% New Tsukuba dataset.
focalLength = [615 615]; % specified in units of pixels

1-23

1 reatured Examples

1-24

principalPoint [320 2401; % in pixels [x, vyl
imageSize size(Irgb,[1,2]); % in pixels [mrows, ncols]
intrinsics = cameralntrinsics(focalLength, principalPoint, imageSize);

Convert to gray scale and undistort. In this example, undistortion has no effect, because the images
are synthetic, with no lens distortion. However, for real images, undistortion is necessary.

prevI = undistortImage(rgb2gray(Irgb), intrinsics);

% Detect features.
prevPoints = detectSURFFeatures(prevI, 'MetricThreshold', 500);

% Select a subset of features, uniformly distributed throughout the image.
numPoints = 200;
prevPoints = selectUniform(prevPoints, numPoints, size(prevI));

% Extract features. Using 'Upright' features improves matching quality if
% the camera motion involves little or no in-plane rotation.
prevFeatures = extractFeatures(prevI, prevPoints, 'Upright', true);

% Add the first view. Place the camera associated with the first view

% at the origin, oriented along the Z-axis.

viewld = 1;

vSet = addView(vSet, viewId, rigid3d(eye(3), [0 O 0]), 'Points', prevPoints);

Plot Initial Camera Pose

Create two graphical camera objects representing the estimated and the actual camera poses based
on ground truth data from the New Tsukuba dataset.

% Setup axes.
figure
axis([-220, 50, -140, 20, -50, 300]);

% Set Y-axis to be vertical pointing down.
view(gca, 3);

set(gca, 'CameraUpVector', [0, -1, 0]);
camorbit(gca, -120, 0, 'data', [0, 1, O]);

grid on
xlabel('X (cm)');
ylabel('Y (cm)');
zlabel('Z (cm)');
hold on

% Plot estimated camera pose.

cameraSize = 7;

camPose = poses(vSet);

camEstimated = plotCamera(camPose, 'Size', cameraSize,...
'Color', 'g', 'Opacity', 0);

% Plot actual camera pose.

camActual = plotCamera('Size', cameraSize, 'AbsolutePose', ...
rigid3d(groundTruthPoses.Orientation{1}, groundTruthPoses.Location{1}),
'Color', 'b', 'Opacity', 0);

% Initialize camera trajectories.
trajectoryEstimated = plot3(0, 0, 0,

g-');

Monocular Visual Odometry

trajectoryActual = plot3(0, 0, 0, 'b-');

legend('Estimated Trajectory', 'Actual Trajectory');

title('Camera Trajectory');

Camera Trajectory

300
200
50
7 {cm) 400 50
-150
-200 X (cm)

Estimate the Pose of the Second View

Detect and extract features from the second view, and match them to the first view using

Estimated Trajectory
Actual Trajectory

- -100

Y (cm)

helperDetectAndMatchFeatures. Estimate the pose of the second view relative to the first view
using helperEstimateRelativePose, and add it to the imageviewset.

% Read and display the image.
viewld = 2;

Irgb = readimage(images, viewId);
step(player, Irgb);

1-25

1 reatured Examples

|| Vidlea Player

[= (==

|

File Tools Wiew Playback Help

“'_ @ q ;_ E_ﬁnuas 3

Processing

RGE480x640 2

% Convert to gray scale and undistort.
I = undistortImage(rgb2gray(Irgb), intrinsics);

% Match features between the previous and the current image.
[

currPoints, currFeatures, indexPairs] = helperDetectAndMatchFeatures(...
prevFeatures, I);

% Estimate the pose of the current view relative to the previous view.
[orient, loc, inlierIdx] = helperEstimateRelativePose(...
prevPoints(indexPairs(:,1)), currPoints(indexPairs(:,2)), intrinsics);

% Exclude epipolar outliers.
indexPairs = indexPairs(inlierIdx, :);

1-26

Monocular Visual Odometry

% Add the current view to the view set.
vSet = addView(vSet, viewId, rigid3d(orient, loc), 'Points', currPoints);

% Store the point matches between the previous and the current views.
vSet = addConnection(vSet, viewId-1, viewId, 'Matches', indexPairs);

The location of the second view relative to the first view can only be recovered up to an unknown
scale factor. Compute the scale factor from the ground truth using helperNormalizeViewSet,
simulating an external sensor, which would be used in a typical monocular visual odometry system.

vSet = helperNormalizeViewSet(vSet, groundTruthPoses);

Update camera trajectory plots using helperUpdateCameraPlots and
helperUpdateCameraTrajectories.

helperUpdateCameraPlots(viewId, camEstimated, camActual, poses(vSet),
groundTruthPoses) ;

helperUpdateCameraTrajectories(viewId, trajectoryEstimated, trajectoryActual,...
poses(vSet), groundTruthPoses);

Camera Trajectory

Estimated Trajectory
Actual Trajectory

= -100

=100
-150
=200 X (cm)
prevl = I;
prevFeatures = currFeatures;
prevPoints = currPoints;

1-27

1 reatured Examples

1-28

Bootstrap Estimating Camera Trajectory Using Global Bundle Adjustment

Find 3D-to-2D correspondences between world points triangulated from the previous two views and
image points from the current view. Use helperFindEpipolarInliers to find the matches that
satisfy the epipolar constraint, and then use helperFind3Dto2DCorrespondences to triangulate
3-D points from the previous two views and find the corresponding 2-D points in the current view.

Compute the world camera pose for the current view by solving the perspective-n-point (PnP)
problem using estimateWorldCameraPose. For the first 15 views, use global bundle adjustment to
refine the entire trajectory. Using global bundle adjustment for a limited number of views bootstraps
estimating the rest of the camera trajectory, and it is not prohibitively expensive.

for viewId = 3:15
% Read and display the next image
Irgb = readimage(images, viewId);
step(player, Irgb);

% Convert to gray scale and undistort.
I = undistortImage(rgb2gray(Irgb), intrinsics);

% Match points between the previous and the current image.
[currPoints, currFeatures, indexPairs] = helperDetectAndMatchFeatures(...
prevFeatures, I);

% Eliminate outliers from feature matches.

inlierIdx = helperFindEpipolarInliers(prevPoints(indexPairs(:,1)),...
currPoints(indexPairs(:, 2)), intrinsics);

indexPairs = indexPairs(inlierIdx, :);

% Triangulate points from the previous two views, and find the

% corresponding points in the current view.

[worldPoints, imagePoints] = helperFind3Dto2DCorrespondences(vSet, ...
intrinsics, indexPairs, currPoints);

Since RANSAC involves a stochastic process, it may sometimes not
reach the desired confidence level and exceed maximum number of
trials. Disable the warning when that happens since the outcomes are
still valid.

warningstate = warning('off', 'vision:ransac:maxTrialsReached"');

o® o o o°

% Estimate the world camera pose for the current view.
[orient, loc] = estimateWorldCameraPose(imagePoints, worldPoints, intrinsics);

% Restore the original warning state
warning(warningstate)

% Add the current view to the view set.
vSet = addView(vSet, viewId, rigid3d(orient, loc), 'Points', currPoints);

% Store the point matches between the previous and the current views.
vSet = addConnection(vSet, viewId-1, viewId, 'Matches', indexPairs);

tracks = findTracks(vSet); % Find point tracks spanning multiple views.
camPoses = poses(vSet); % Get camera poses for all views.

% Triangulate initial locations for the 3-D world points.

Monocular Visual Odometry

xyzPoints = triangulateMultiview(tracks, camPoses, intrinsics);

% Refine camera poses using bundle adjustment.

[~, camPoses] = bundleAdjustment(xyzPoints, tracks, camPoses,
intrinsics, 'PointsUndistorted', true, 'AbsoluteTolerance', le-12,...
'RelativeTolerance', le-12, 'MaxIterations', 200, 'FixedViewID', 1);

vSet = updateView(vSet, camPoses); % Update view set.

% Bundle adjustment can move the entire set of cameras. Normalize the
% view set to place the first camera at the origin looking along the
% Z-axes and adjust the scale to match that of the ground truth.

vSet = helperNormalizeViewSet(vSet, groundTruthPoses);

% Update camera trajectory plot.

helperUpdateCameraPlots(viewId, camEstimated, camActual, poses(vSet),
groundTruthPoses) ;

helperUpdateCameraTrajectories(viewId, trajectoryEstimated,
trajectoryActual, poses(vSet), groundTruthPoses);

prevl = I;
prevFeatures = currFeatures;
prevPoints = currPoints;
end
Camera Trajectory
Estimated Trajectory
— Actual Trajectory
= =100
300 —
E
L]
- -850
200 >
~ 0
50
Z (cm)
-100
200 =150
X (cm)

1-29

1 reatured Examples

i__" Vicleo Plaver [= || =] ” &3 |
File Tools Wiew Playback Help N
& | | Ed|100% v

Processing

RGE480x640 15

1-30

Estimate Remaining Camera Trajectory Using Windowed Bundle Adjustment

Estimate the remaining camera trajectory by using windowed bundle adjustment to only refine the
last 15 views, in order to limit the amount of computation. Furthermore, bundle adjustment does not
have to be called for every view, because estimateWorldCameraPose computes the pose in the
same units as the 3-D points. This section calls bundle adjustment for every 7th view. The window size
and the frequency of calling bundle adjustment have been chosen experimentally.

for viewId = 16:numel(images.Files)
% Read and display the next image
Irgb = readimage(images, viewId);
step(player, Irgb);

% Convert to gray scale and undistort.

Monocular Visual Odometry

I = undistortImage(rgb2gray(Irgb), intrinsics);

% Match points between the previous and the current image.
[currPoints, currFeatures, indexPairs] = helperDetectAndMatchFeatures(...
prevFeatures, I);

% Triangulate points from the previous two views, and find the

% corresponding points in the current view.

[worldPoints, imagePoints] = helperFind3Dto2DCorrespondences(vSet,
intrinsics, indexPairs, currPoints);

Since RANSAC involves a stochastic process, it may sometimes not
reach the desired confidence level and exceed maximum number of
trials. Disable the warning when that happens since the outcomes are
still valid.

warningstate = warning('off', 'vision:ransac:maxTrialsReached"');

o® o° o o°

% Estimate the world camera pose for the current view.
[orient, loc] = estimateWorldCameraPose(imagePoints, worldPoints, intrinsics);

% Restore the original warning state
warning(warningstate)

% Add the current view and connection to the view set.
vSet addView(vSet, viewId, rigid3d(orient, loc), 'Points', currPoints);
vSet addConnection(vSet, viewId-1, viewId, 'Matches', indexPairs);

% Refine estimated camera poses using windowed bundle adjustment. Run
% the optimization every 7th view.
if mod(viewld, 7) ==
% Find point tracks in the last 15 views and triangulate.
windowSize = 15;
startFrame = max(1l, viewId - windowSize);
tracks = findTracks(vSet, startFrame:viewId);
camPoses = poses(vSet, startFrame:viewld);
[xyzPoints, reprojErrors] = triangulateMultiview(tracks, camPoses, intrinsics);

% Hold the first two poses fixed, to keep the same scale.
fixedIds = [startFrame, startFrame+1];

% Exclude points and tracks with high reprojection errors.
idx = reprojErrors < 2;

[~, camPoses] = bundleAdjustment(xyzPoints(idx, :), tracks(idx),
camPoses, intrinsics, 'FixedViewIDs', fixedIds,
'"PointsUndistorted', true, 'AbsoluteTolerance', le-12,...
'RelativeTolerance', le-12, 'MaxIterations', 200);

vSet = updateView(vSet, camPoses); % Update view set.
end

% Update camera trajectory plot.

helperUpdateCameraPlots(viewId, camEstimated, camActual, poses(vSet),
groundTruthPoses) ;

helperUpdateCameraTrajectories(viewId, trajectoryEstimated,
trajectoryActual, poses(vSet), groundTruthPoses);

prevl = I;

1-31

1 reatured Examples

prevFeatures = currFeatures;
prevPoints = currPoints;
end
] Video Plaver [|| = | =]
File Tools View Playback Help o
& | & Bl oo v

Processing RGE:480x640 150

hold off

1-32

Monocular Visual Odometry

Camera Trajectory

Estimated Trajectory
Actual Trajectory

= -100
300 =
[
- 50 7
200 >
= 0
50
Z (cm) -100
opg 150
X (cm)
Summary

This example showed how to estimate the trajectory of a calibrated monocular camera from a
sequence of views. Notice that the estimated trajectory does not exactly match the ground truth.
Despite the non-linear refinement of camera poses, errors in camera pose estimation accumulate,
resulting in drift. In visual odometry systems this problem is typically addressed by fusing
information from multiple sensors, and by performing loop closure.

References

[1] Martin Peris Martorell, Atsuto Maki, Sarah Martull, Yasuhiro Ohkawa, Kazuhiro Fukui, "Towards a
Simulation Driven Stereo Vision System". Proceedings of ICPR, pp.1038-1042, 2012.

[2] Sarah Martull, Martin Peris Martorell, Kazuhiro Fukui, "Realistic CG Stereo Image Dataset with
Ground Truth Disparity Maps", Proceedings of ICPR workshop TrakMark2012, pp.40-42, 2012.

[3] M.I.A. Lourakis and A.A. Argyros (2009). "SBA: A Software Package for Generic Sparse Bundle
Adjustment". ACM Transactions on Mathematical Software (ACM) 36 (1): 1-30.

[4] R. Hartley, A. Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University
Press, 2003.

[5] B. Triggs; P. McLauchlan; R. Hartley; A. Fitzgibbon (1999). "Bundle Adjustment: A Modern

Synthesis". Proceedings of the International Workshop on Vision Algorithms. Springer-Verlag. pp.
298-372.

1-33

1 reatured Examples

[6] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, "Complete Solution Classification for the
Perspective-Three-Point Problem," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no.
8, pp. 930-943, 2003.

1-34

Track Vehicles Using Lidar: From Point Cloud to Track List

Track Vehicles Using Lidar: From Point Cloud to Track List

Raw point cloud

(pointCloud)

Property

names

This example shows you how to track vehicles using measurements from a lidar sensor mounted on
top of an ego vehicle. Lidar sensors report measurements as a point cloud. The example illustrates
the workflow in MATLAB® for processing the point cloud and tracking the objects. For a Simulink®
version of the example, refer to “Track Vehicles Using Lidar Data in Simulink” (Sensor Fusion and
Tracking Toolbox).The lidar data used in this example is recorded from a highway driving scenario. In
this example, you use the recorded data to track vehicles with a joint probabilistic data association
(JPDA) tracker and an interacting multiple model (IMM) approach.

3-D Bounding Box Detector Model

Due to high resolution capabilities of the lidar sensor, each scan from the sensor contains a large
number of points, commonly known as a point cloud. This raw data must be preprocessed to extract
objects of interest, such as cars, cyclists, and pedestrians. For more details about segmentation of
lidar data into objects such as the ground plane and obstacles, refer to the “Ground Plane and
Obstacle Detection Using Lidar” (Automated Driving Toolbox) example. In this example, the point
clouds belonging to obstacles are further classified into clusters using the pcsegdist function, and
each cluster is converted to a bounding box detection with the following format:

[y 21 wh]

x, U and = refer to the x-, y- and z-positions of the bounding box and /, #* and /: refer to its length,
width, and height, respectively.

The bounding box is fit onto each cluster by using minimum and maximum of coordinates of points in
each dimension. The detector is implemented by a supporting class HelperBoundingBoxDetector,
which wraps around point cloud segmentation and clustering functionalities. An object of this class
accepts a pointCloud input and returns a list of objectDetection objects with bounding box
measurements.

The diagram shows the processes involved in the bounding box detector model and the Computer
Vision Toolbox™ functions used to implement each process. It also shows the properties of the
supporting class that control each process.

HelperBoundingBoxDetector

> > = > >

Inlier point Obstacle Clusters cbjectDetection
cloud cloud
KLimits i SegmentationMinDistance
» YLimits G oY
ZLimits Grour AngularDistance

oVehicleRadius

Load data if unavailable. The lidar data is stored as a cell array of
pointCloud objects.

if ~exist('lidarData', 'var')

% Specify initial and final time for simulation.

%
%

1-35

1 reatured Examples

initTime = 0;

finalTime = 35;

[lidarData, imageData] = loadLidarAndImageData(initTime,finalTime);
end

% Set random seed to generate reproducible results.
S = rng(2018);

% A bounding box detector model.
detectorModel = HelperBoundingBoxDetector(...

'XLimits',[-50 75],... min-max
'YLimits',[-5 5],... min-max
'ZLimits',[-2 5],... min-max

minimum Euclidian distance

minimum points per cluster

measurement noise in detection report

maximum distance of ground points from ground plane

'SegmentationMinDistance',1.6,...
'MinDetectionsPerCluster',1, ...
'MeasurementNoise',eye(6), ...
'GroundMaxDistance',0.3);

0® o° o° o° o o° o°

Target State and Sensor Measurement Model

The first step in tracking an object is defining its state, and the models that define the transition of
state and the corresponding measurement. These two sets of equations are collectively known as the
state-space model of the target. To model the state of vehicles for tracking using lidar, this example
uses a cuboid model with following convention:

x = [Tpin 0 1 w h]

Ti-in Tefers to the portion of the state that controls the kinematics of the motion center, and # is the
yaw angle. The length, width, height of the cuboid are modeled as a constants, whose estimates
evolve in time during correction stages of the filter.

In this example, you use two state-space models: a constant velocity (cv) cuboid model and a constant
turn-rate (ct) cuboid model. These models differ in the way they define the kinematic part of the
state, as described below:

- -[m Tyyzzfl u'Fd
Ty = ﬁ'j'y ﬁf z 208 fu'id

For information about their state transition, refer to the helperConstvelCuboid and
helperConstturnCuboid functions used in this example.

The helperCvmeasCuboid and helperCtmeasCuboid measurement models describe how the
sensor perceives the constant velocity and constant turn-rate states respectively, and they return
bounding box measurements. Because the state contains information about size of the target, the
measurement model includes the effect of center-point offset and bounding box shrinkage, as
perceived by the sensor, due to effects like self-occlusion [1]. This effect is modeled by a shrinkage
factor that is directly proportional to the distance from the tracked vehicle to the sensor.

The image below demonstrates the measurement model operating at different state-space samples.
Notice the modeled effects of bounding box shrinkage and center-point offset as the objects move
around the ego vehicle.

1-36

Track Vehicles Using Lidar: From Point Cloud to Track List

Top View

Set Up Tracker and Visualization

The image below shows the complete workflow to obtain a list of tracks from a pointCloud input.

Segmentation Details

-
pointCloud abjectDetection

Confirmed Tracks

e —

All Tracks

—_—

Frobability
of detection

Now, set up the tracker and the visualization used in the example.

A joint probabilistic data association tracker (trackerJPDA) coupled with an IMM filter
(trackingIMM) is used to track objects in this example. The IMM filter uses a constant velocity and
constant turn-rate model and is initialized using the supporting function, helperInitIMMFilter,

1-37

1 reatured Exa mples

included with this example. The IMM approach helps a track to switch between motion models and
thus achieve good estimation accuracy during events like maneuvering or lane changing. The
animation below shows the effect of mixing the constant velocity and constant turn-rate model during
prediction stages of the IMM filter.

Constant turn-rate (CT)

CW = CT O = CT = OV

cv=0.90ct=0.10 cv =0.50 ct=0.50 cv=0.10 ct=0.90

The IMM filter updates the probability of each model when it is corrected with detections from the
object. The animation below shows the estimated trajectory of a vehicle during a lane change event
and the corresponding estimated probabilities of each model.

1-38

Track Vehicles Using Lidar: From Point Cloud to Track List

MM during lange change

True Trajectory Estimated Trajectory

Y (m)

Set the HasDetectableTrackIDsInput property of the tracker as true, which enables you to
specify a state-dependent probability of detection. The detection probability of a track is calculated
by the helperCalcDetectability function, listed at the end of this example.

assignmentGate = [50 100];
confThreshold = [7 10];
delThreshold = [8 10];

Kc = le-5;

Assignment threshold;

Confirmation threshold for history logic
Deletion threshold for history logic
False-alarm rate per unit volume

o® o o o°

% IMM filter initialization function
filterInitFcn = @helperInitIMMFilter;

% A joint probabilistic data association tracker with IMM filter

tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
'TrackLogic', 'History', ...
"AssignmentThreshold',assignmentGate, ...

1-39

1 reatured Examples

'ClutterDensity’',Kc, ...
'ConfirmationThreshold',confThreshold, ...
'DeletionThreshold',delThreshold,...
'HasDetectableTrackIDsInput', true, ...
'InitializationThreshold',0);

The visualization is divided into these main categories:

1 Lidar Preprocessing and Tracking - This display shows the raw point cloud, segmented ground,
and obstacles. It also shows the resulting detections from the detector model and the tracks of
vehicles generated by the tracker.

2 Ego Vehicle Display - This display shows the 2-D bird's-eye view of the scenario. It shows the
obstacle point cloud, bounding box detections, and the tracks generated by the tracker. For
reference, it also displays the image recorded from a camera mounted on the ego vehicle and its
field of view.

3 Tracking Details - This display shows the scenario zoomed around the ego vehicle. It also shows
finer tracking details, such as error covariance in estimated position of each track and its motion
model probabilities, denoted by cv and ct.

% Create display
displayObject = HelperLidarExampleDisplay(imageData{l},...
'PositionIndex',[1 3 6],...
'VelocityIndex',[2 4 71,...
'DimensionIndex',[9 10 111,...
'YawIndex',8, ...
'MovieName','', ...
'RecordGIF', false);

pecify a movie name to record a movie.

% S
% Specify true to record new GIFs

Loop Through Data

Loop through the recorded lidar data, generate detections from the current point cloud using the
detector model and then process the detections using the tracker.

0; % Start time
1; % Time step

% Initiate all tracks.
allTracks = struct([]);

% Initiate variables for comparing MATLAB and MEX simulation.
numTracks = zeros(numel(lidarData),2);

% Loop through the data
for i = 1l:numel(lidarData)
% Update time
time = time + dT;

% Get current lidar scan
currentlLidar = lidarData{i};

% Generator detections from lidar scan.
[detections,obstacleIndices,groundIndices,croppedIndices] = detectorModel(currentLidar,time)

% Calculate detectability of each track.
detectableTracksInput = helperCalcDetectability(allTracks,[1 3 6]);

% Pass detections to track.

1-40

Track Vehicles Using Lidar: From Point Cloud to Track List

end

[confirmedTracks,tentativeTracks,allTracks] = tracker(detections,time,detectableTracksInput)
numTracks(i,1l) = numel(confirmedTracks);

% Get model probabilities from IMM filter of each track using

% getTrackFilterProperties function of the tracker.

modelProbs = zeros(2,numel(confirmedTracks));

for k = 1l:numel(confirmedTracks)
cl = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID, 'ModelProbabilities"');
modelProbs(:,k) = c1{1};

end

% Update display

if isvalid(displayObject.PointCloudProcessingDisplay.ObstaclePlotter)
% Get current image scan for reference image
currentImage = imageData{i};

% Update display object
displayObject(detections,confirmedTracks, currentLidar,obstaclelndices,...
groundIndices, croppedIndices,currentImage,modelProbs);
end

% Snap a figure at time = 18
if abs(time - 18) < dT/2

snapnow(displayObject);
end

% Write movie if requested
if ~isempty(displayObject.MovieName)

end

writeMovie(displayObject);

% Write new GIFs if requested.
if displayObject.RecordGIF

end

% second input is start frame, third input is end frame and last input
% 1s a character vector specifying the panel to record.
writeAnimatedGIF(displayObject, 10,170, 'trackMaintenance', 'ego');
writeAnimatedGIF(displayObject,310,330, 'jpda', 'processing');
writeAnimatedGIF(displayObject, 150,180, 'imm', 'details"');

1-41

1 reatured Examples

1-42

e Reference Image
men

P

Tracking Details

The figure above shows the three displays at time = 18 seconds. The tracks are represented by green
bounding boxes. The bounding box detections are represented by orange bounding boxes. The
detections also have orange points inside them, representing the point cloud segmented as obstacles.
The segmented ground is shown in purple. The cropped or discarded point cloud is shown in blue.

Generate C Code

You can generate C code from the MATLAB® code for the tracking and the preprocessing algorithm
using MATLAB Coder™. C code generation enables you to accelerate MATLAB code for simulation. To
generate C code, the algorithm must be restructured as a MATLAB function, which can be compiled
into a MEX file or a shared library. For this purpose, the point cloud processing algorithm and the
tracking algorithm is restructured into a MATLAB function, mexLidarTracker. Some variables are
defined as persistent to preserve their state between multiple calls to the function (see
persistent). The inputs and outputs of the function can be observed in the function description
provided in the "Supporting Files" section at the end of this example.

MATLAB coder requires specifying the properties of all the input arguments. An easy way to do this is
by defining the input properties by example at the command line using the -args option. For more
information, see “Define Input Properties by Example at the Command Line” (MATLAB Coder). Note
that the top-level input arguments cannot be objects of the handle class. Therefore, the function
accepts the x, y and z locations of the point cloud as an input. From the stored point cloud, this
information can be extracted using the Location property of the pointCloud object. This
information is also directly available as the raw data from the lidar sensor.

Track Vehicles Using Lidar: From Point Cloud to Track List

% Input lists
inputExample = {lidarData{l}.Location, 0};

% Create configuration for MEX generation
cfg = coder.config('mex"');

Replace cfg with the following to generate static library and perform
software-in-the-loop simulation. This requires Embedded Coder license.

cfg = coder.config('lib'); % Static library
cfg.VerificationMode = 'SIL'; % Software-in-the-loop

d° o° o° o° o°

o

s Generate code if file does not exist.
if ~exist('mexLidarTracker mex','file')
h = msgbox({'Generating code. This may take a few minutes...';'This message box will close wl
% -config allows specifying the codegen configuration
% -0 allows specifying the name of the output file
codegen -config cfg -o mexLidarTracker _mex mexLidarTracker -args inputExample
close(h);
else
clear mexLidarTracker mex;
end

Rerun simulation with MEX Code

Rerun the simulation using the generated MEX code, mexLidarTracker mex.

% Reset time
time = 0;

for 1 = 1:numel(lidarData)
time = time + dT;

currentLidar = lidarData{i};

[detectionsMex,obstacleIndicesMex,groundIndicesMex, croppedIndicesMex, ...
confirmedTracksMex, modelProbsMex] = mexLidarTracker mex(currentLidar.Location,time);

% Record data for comparison with MATLAB execution.
numTracks(i,2) = numel(confirmedTracksMex) ;
end

Compare results between MATLAB and MEX Execution
disp(isequal(numTracks(:,1),numTracks(:,2)));

1

Notice that the number of confirmed tracks is the same for MATLAB and MEX code execution. This
assures that the lidar preprocessing and tracking algorithm returns the same results with generated
C code as with the MATLAB code.

Results

Now, analyze different events in the scenario and understand how the combination of lidar
measurement model, joint probabilistic data association, and interacting multiple model filter, helps
achieve a good estimation of the vehicle tracks.

1-43

1 reatured Examples

1-44

Track Maintenance

The animation above shows the simulation between time = 3 seconds and time = 16 seconds. Notice
that tracks such as T10 and T6 maintain their IDs and trajectory during the time span. However,
track T9 is lost because the tracked vehicle was missed (not detected) for a long time by the sensor.
Also, notice that the tracked objects are able to maintain their shape and kinematic center by
positioning the detections onto the visible portions of the vehicles. For example, as Track T7 moves
forward, bounding box detections start to fall on its visible rear portion and the track maintains the
actual size of the vehicle. This illustrates the offset and shrinkage effect modeled in the measurement
functions.

Capturing Maneuvers

Track Vehicles Using Lidar: From Point Cloud to Track List

The animation shows that using an IMM filter helps the tracker to maintain tracks on maneuvering
vehicles. Notice that the vehicle tracked by T4 changes lanes behind the ego vehicle. The tracker is
able maintain a track on the vehicle during this maneuvering event. Also notice in the display that its

probability of following the constant turn model, denoted by ct, increases during the lane change
maneuver.

Joint Probabilistic Data Association

1-45

1 reatured Exa mples

1-46

|Bounding box detections | |Bounding box tracks

X (m)

This animation shows that using a joint probabilistic data association tracker helps in maintaining
tracks during ambiguous situations. Here, vehicles tracked by T24 and T62, have a low probability of
detection due to their large distance from the sensor. Notice that the tracker is able to maintain
tracks during events when one of the vehicles is not detected. During the event, the tracks first
coalesce, which is a known phenomenon in JPDA, and then separate as soon as the vehicle was
detected again.

Summary

This example showed how to use a JPDA tracker with an IMM filter to track objects using a lidar
sensor. You learned how a raw point cloud can be preprocessed to generate detections for
conventional trackers, which assume one detection per object per sensor scan. You also learned how
to define a cuboid model to describe the kinematics, dimensions, and measurements of extended

Track Vehicles Using Lidar: From Point Cloud to Track List

objects being tracked by the JPDA tracker. In addition, you generated C code from the algorithm and
verified its execution results with the MATLAB simulation.

Supporting Files
helperLidarModel

This function defines the lidar model to simulate shrinkage of the bounding box measurement and
center-point offset. This function is used in the helperCvmeasCuboid and helperCtmeasCuboid
functions to obtain bounding box measurement from the state.

function meas = helperLidarModel(pos,dim,yaw)
This function returns the expected bounding box measurement given an
object's position, dimension, and yaw angle.

o o°

o°

Copyright 2019 The MathWorks, Inc.

% Get x,y and z

X = pos(1l,:);

y = pos(2,:);

z = pos(3,:) - 2; % lidar mounted at height = 2 meters.

% Get spherical measurement.
[az,~,r] = cart2sph(x,y,z);

% Shrink rate
s = 3/50; % 3 meters radial length at 50 meters.
sz = 2/50; % 2 meters height at 50 meters.

% Get length, width and height.
L = dim(1,:);
W = dim(2,:);
H = dim(3,:);

az = az - deg2rad(yaw);

% Shrink length along radial direction.
Lshrink = min(L,abs(s*r.*(cos(az))));
Ls = L - Lshrink;

% Shrink width along radial direction.
Wshrink = min(W,abs(s*r.*(sin(az))));
Ws = W - Wshrink;

% Shrink height.
Hshrink = min(H,sz*r);
Hs = H - Hshrink;

% Measurement is given by a min-max detector hence length and width must be
% projected along x and vy.

Lmeas = Ls.*cosd(yaw) + Ws.*sind(yaw);

Wmeas = Ls.*sind(yaw) + Ws.*cosd(yaw);

% Similar shift is for x and y directions.

shiftX = Lshrink.*cosd(yaw) + Wshrink.*sind(yaw);
shiftY = Lshrink.*sind(yaw) + Wshrink.*cosd(yaw);
shiftZ = Hshrink;

1-47

1 reatured Examples

o°

Modeling the affect of box origin offset
X - sign(x).*shiftX/2;

y - sign(y).*shiftY/2;

z + shiftz/2 + 2;

N < X
I mnnun

% Measurement format
meas = [X;y;z;Lmeas;Wmeas;Hs];

end

helperInverseLidarModel

This function defines the inverse lidar model to initiate a tracking filter using a lidar bounding box
measurement. This function is used in the helperInitIMMFilter function to obtain state estimates
from a bounding box measurement.

function [pos,posCov,dim,dimCov,yaw,yawCov] = helperInverselLidarModel(meas,measCov)
% This function returns the position, dimension, yaw using a bounding
% box measurement.

o°

Copyright 2019 The MathWorks, Inc.

o°

Shrink rate.
= 3/50;
z = 2/50;

n un

% X,y and z of measurement
meas(1,:);
meas(2,:);

meas(3,:);

o nx

N < X

[az,~,r] = cart2sph(x,y,z);

% Shift x and y position.
Lshrink = abs(s*r.*(cos(az)));
Wshrink = abs(s*r.*(sin(az)));

Hshrink sz*r;

shiftX = Lshrink;

shiftY = Wshrink;

shiftZ = Hshrink;

X = X + sign(x).*shiftX/2;
y =y + sign(y).*shiftY/2;
z = z + sign(z).*shiftz/2;

pos = [x;y;z];
posCov = measCov(1l:3,1:3,:);

yaw = zeros(1l,numel(x),'like',x);
yawCov = ones(1,1,numel(x), 'like',x);

Dimensions are initialized for a standard passenger car with low
uncertainity.
dim = [4.7;1.8;1.4];

)
©
)

©

1-48

Track Vehicles Using Lidar: From Point Cloud to Track List

dimCov = 0.01*eye(3);
end

HelperBoundingBoxDetector

This is the supporting class HelperBoundingBoxDetector to accept a point cloud input and return
a list of objectDetection

classdef HelperBoundingBoxDetector < matlab.System
HelperBoundingBoxDetector A helper class to segment the point cloud
into bounding box detections.

The step call to the object does the following things:

1. Removes point cloud outside the limits.

2. From the survived point cloud, segments out ground

3. From the obstacle point cloud, forms clusters and puts bounding
box on each cluster.

0® 0% o° o° o° o° o° o°

o°

Cropping properties

properties
% XLimits XLimits for the scene
XLimits = [-70 70];
% YLimits YLimits for the scene
YLimits = [-6 6];
% ZLimits ZLimits fot the scene
ZLimits = [-2 10];

end

% Ground Segmentation Properties

properties
% GroundMaxDistance Maximum distance of point to the ground plane
GroundMaxDistance = 0.3;
% GroundReferenceVector Reference vector of ground plane
GroundReferenceVector = [0 0 1];
% GroundMaxAngularDistance Maximum angular distance of point to reference vector
GroundMaxAngularDistance = 5;

end

% Bounding box Segmentation properties

properties
% SegmentationMinDistance Distance threshold for segmentation
SegmentationMinDistance = 1.6;
% MinDetectionsPerCluster Minimum number of detections per cluster
MinDetectionsPerCluster = 2;
% MaxZDistanceCluster Maximum Z-coordinate of cluster
MaxZDistanceCluster = 3;
% MinZDistanceCluster Minimum Z-coordinate of cluster
MinZDistanceCluster = -3;

end

% Ego vehicle radius to remove ego vehicle point cloud.
properties
% EgoVehicleRadius Radius of ego vehicle
EgoVehicleRadius = 3;
end

1-49

1 reatured Examples

properties
% MeasurementNoise Measurement noise for the bounding box detection
MeasurementNoise = blkdiag(eye(3),eye(3));

end

properties (Nontunable)
MeasurementParameters = struct.empty(0,1);

end
methods
function obj = HelperBoundingBoxDetector(varargin)
setProperties(obj,nargin,varargin{:})
end
end

methods (Access = protected)
function [bboxDets,obstacleIndices,groundIndices,croppedIndices] = stepImpl(obj,currentP
% Crop point cloud
[pcSurvived, survivedIndices, croppedIndices]
% Remove ground plane
[pcObstacles,obstacleIndices,groundIndices]
% Form clusters and get bounding boxes
detBBoxes = getBoundingBoxes (pcObstacles,obj.SegmentationMinDistance,obj.MinDetectio!
% Assemble detections
if isempty(obj.MeasurementParameters)
measParams = {};
else
measParams = obj.MeasurementParameters;

cropPointCloud(currentPointCloud, obj . XI

removeGroundPlane(pcSurvived, obj.Grount

end
bboxDets = assembleDetections(detBBoxes,obj.MeasurementNoise,measParams,time);
end
end
end

function detections = assembleDetections(bboxes,measNoise,measParams, time)

% This method assembles the detections in objectDetection format.

numBoxes = size(bboxes,?2);

detections = cell(numBoxes,1);

for i = 1l:numBoxes

detections{i} = objectDetection(time,cast(bboxes(:,i), 'double'), ...

'MeasurementNoise',double(measNoise), 'ObjectAttributes',struct,...
'MeasurementParameters', measParams);

end

end

function bboxes = getBoundingBoxes(ptCloud,minDistance,minDetsPerCluster,maxZDistance,minZDistan
This method fits bounding boxes on each cluster with some basic
rules.
Cluster must have atleast minDetsPerCluster points.
Its mean z must be between maxZDistance and minZDistance.
length, width and height are calculated using min and max from each
s dimension.
[labels,numClusters] = pcsegdist(ptCloud,minDistance);
pointData = ptCloud.Location;
bboxes = nan(6,numClusters, 'like',pointData);
isValidCluster = false(1l,numClusters);
for i = 1l:numClusters
thisPointData = pointData(labels == 1i,:);

° o° o o° o° of

Track Vehicles Using Lidar: From Point Cloud to Track List

meanPoint = mean(thisPointData,1);
if size(thisPointData,1) > minDetsPerCluster && ...

meanPoint(3) < maxZDistance && meanPoint(3) > minZDistance
min(thisPointData(:,1));
max(thisPointData(:,1
min(thisPointData(:,2
max (thisPointData(:,2
min(thisPointData(:,3
max (thisPointData(:,3

xMin
XMax
yMin
yMax
zMin
zMax
1

N< X o<

+
yMin + yMax
+

bboxes(:,i) = [x y z L w h]"';
isValidCluster(i) = 1 < 20; % max length of 20 meters
end
end
bboxes = bboxes(:,isValidCluster);
end

function [ptCloudOut,obstacleIndices,groundIndices] = removeGroundPlane(ptCloudIn,maxGroundDist,
% This method removes the ground plane from point cloud using
% pcfitplane.
[~,groundIndices,outliers] = pcfitplane(ptCloudIn,maxGroundDist, referenceVector,maxAngularDi.
ptCloudOut = select(ptCloudIn,outliers);
obstacleIndices = currentIndices(outliers);
groundIndices = currentIndices(groundIndices);

end

function [ptCloudOut,indices,croppedIndices] = cropPointCloud(ptCloudIn,xLim,yLim,zLim, egoVehicle
% This method selects the point cloud within limits and removes the
% ego vehicle point cloud using findNeighborsInRadius
locations = ptCloudIn.Location;
locations = reshape(locations,[],3);

insideX = locations(:,1) < xLim(2) & locations(:,1) > xLim(1);
insideY = locations(:,2) < yLim(2) & locations(:,2) > yLim(1);
insideZ = locations(:,3) < zLim(2) & locations(:,3) > zLim(1);

inside = insideX & insideY & insideZ;

% Remove ego vehicle
nearIndices = findNeighborsInRadius(ptCloudIn,[@ O 0],egoVehicleRadius);
nonEgoIndices = true(ptCloudIn.Count,1);
nonEgoIndices(nearIndices) = false;
validIndices = inside & nonEgoIndices;
indices = find(validIndices);
croppedIndices = find(~validIndices);
ptCloudOut = select(ptCloudIn,indices);
end

mexLidarTracker

This function implements the point cloud preprocessing display and the tracking algorithm using a
functional interface for code generation.

1-51

1 reatured Examples

1-52

function [detections,obstacleIndices,groundIndices,croppedIndices,...
confirmedTracks, modelProbs] = mexLidarTracker(ptCloudLocations,time)

persistent detectorModel tracker detectableTracksInput currentNumTracks

if isempty(detectorModel) || isempty(tracker) || isempty(detectableTracksInput) || isempty(curre

% Use the same starting seed as MATLAB to reproduce results in SIL
% simulation.
rng(2018);

% A bounding box detector model.
detectorModel = HelperBoundingBoxDetector(...

'XLimits',[-50 75],... min-max
'YLimits',[-5 5],... min-max
'ZLimits',[-2 5],... min-max

minimum Euclidian distance
minimum points per cluster
measurement noise in detection report.
maximum distance of ground points from

'SegmentationMinDistance',1.6, ...
'MinDetectionsPerCluster',1, ...
'MeasurementNoise',eye(6), ...
'GroundMaxDistance',0.3);

0® o° o° o° o° o° o°

Assignment threshold;

Confirmation threshold for history logic
Deletion threshold for history logic
False-alarm rate per unit volume

assignmentGate = [50 100];
confThreshold = [7 10];
delThreshold = [8 10];

Kc = le-5;

o° o° o° o°

filterInitFcn = @helperInitIMMFilter;

tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn, ...
'TrackLogic', 'History', ...
"AssignmentThreshold',assignmentGate, ...
'ClutterDensity',Kc, ...
'ConfirmationThreshold',confThreshold,...
'DeletionThreshold',delThreshold,...
'HasDetectableTrackIDsInput',true,...
'InitializationThreshold',o, ...
'MaxNumTracks',30);

detectableTracksInput = zeros(tracker.MaxNumTracks,2);

currentNumTracks = 0;
end

ptCloud = pointCloud(ptCloudLocations);

% Detector model
[detections,obstacleIndices,groundIndices, croppedIndices] = detectorModel(ptCloud,time);

% Call tracker

[confirmedTracks,~,allTracks] = tracker(detections,time,detectableTracksInput(1l:currentNumTracks
% Update the detectability input

currentNumTracks = numel(allTracks);

detectableTracksInput(l:currentNumTracks,:) = helperCalcDetectability(allTracks,[1 3 6]);

% Get model probabilities
modelProbs = zeros(2,numel(confirmedTracks));

Track Vehicles Using Lidar: From Point Cloud to Track List

if isLocked(tracker)
for k = 1l:numel(confirmedTracks)
= getTrackFilterProperties(tracker,confirmedTracks(k).TrackID, 'ModelProbabilities");
probs = c1{1};
modelProbs(1, k)
modelProbs(2, k)
end

probs(1);
probs(2);

end

end

helperCalcDetectability

The function calculate the probability of detection for each track. This function is used to generate
the "DetectableTracksIDs" input for the trackerJPDA.

function detectableTracksInput = helperCalcDetectability(tracks,posIndices)
This is a helper function to calculate the detection probability of
tracks for the lidar tracking example. It may be removed in a future
release.

o° o o°

o°

Copyright 2019 The MathWorks, Inc.

The bounding box detector has low probability of segmenting point clouds
into bounding boxes are distances greater than 40 meters. This function
models this effect using a state-dependent probability of detection for
each tracker. After a maximum range, the Pd is set to a high value to
enable deletion of track at a faster rate.

if isempty(tracks)

detectableTracksInput = zeros(0,2);

return;

d° o° o° o° o°

end
rMax = 75;
rAmbig =
stateSize = numel(tracks(1l).State);
posSelector = zeros(3,stateSize);
posSelector(l,posIndices(l)) =
posSelector(2,posIndices(2)) = 1;
posSelector(3,posIndices(3)) =
pos = getTrackPositions(tracks, posSelector)
if coder.target('MATLAB')

trackIDs = [tracks.TrackID];
else

trackIDs = zeros(1l,numel(tracks),'uint32');

for i = 1l:numel(tracks)

trackIDs(i) = tracks(i).TrackID;

end
end
[~,~,r] = cart2sph(pos(:,1),pos(:,2),pos(:,3));
probDetection = 0.9*ones(numel(tracks),1);
probDetection(r > rAmbig) = 0.4;
probDetection(r > rMax) = 0.99;
detectableTracksInput = [double(trackIDs(:)) probDetection(:)];
end

1-53

1 reatured Examples

loadLidarAndImageData

Stitches Lidar and Camera data for processing using initial and final time specified.

function [lidarData,imageDatal = loadLidarAndImageData(initTime, finalTime)
initFrame = max(1l,floor(initTime*10));

lastFrame = min(350,ceil(finalTime*10));

load ('imageData 35seconds.mat', 'allImageData');

imageData = alllmageData(initFrame:lastFrame);

lastFrame - initFrame + 1;
cell(numFrames,1);

numFrames =
lidarData =
% Each file contains 70 frames.
initFileIndex floor(initFrame/70) + 1;
lastFileIndex ceil(lastFrame/70);

frameIndices = [1:70:numFrames numFrames + 1];

counter = 1;

for i = initFileIndex:lastFileIndex
startFrame = frameIndices(counter);
endFrame = frameIndices(counter + 1) - 1;
load(['lidarData ',num2str(i)], 'currentLidarData');
lidarData(startFrame:endFrame) = currentLidarData(l: (endFrame + 1 - startFrame));
counter = counter + 1;

end

end

References

[1] Arya Senna Abdul Rachman, Arya. "3D-LIDAR Multi Object Tracking for Autonomous Driving:
Multi-target Detection and Tracking under Urban Road Uncertainties." (2017).

Semantic Segmentation Using Dilated Convolutions

Semantic Segmentation Using Dilated Convolutions

Train a semantic segmentation network using dilated convolutions.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is
segmented by class. Applications for semantic segmentation include road segmentation for
autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see “Getting
Started with Semantic Segmentation Using Deep Learning” on page 7-29.

Semantic segmentation networks like DeepLab [1] make extensive use of dilated convolutions (also
known as atrous convolutions) because they can increase the receptive field of the layer (the area of
the input which the layers can see) without increasing the number of parameters or computations.

Load Training Data

The example uses a simple dataset of 32-by-32 triangle images for illustration purposes. The dataset
includes accompanying pixel label ground truth data. Load the training data using an
imageDatastore and a pixelLabelDatastore.

dataFolder = fullfile(toolboxdir('vision'), 'visiondata', 'triangleImages');
imageFolderTrain = fullfile(dataFolder, 'trainingImages');
labelFolderTrain = fullfile(dataFolder, 'traininglLabels');

Create an imageDatastore for the images.
imdsTrain = imageDatastore(imageFolderTrain);

Create a pixelLabelDatastore for the ground truth pixel labels.

classNames = ["triangle" "background"];
labels = [255 0];
pxdsTrain = pixellLabelDatastore(labelFolderTrain,classNames, labels)

pxdsTrain =
PixelLabelDatastore with properties:

Files: {200x1 cell}
ClassNames: {2x1 cell}
ReadSize: 1
ReadFcn: @readDatastoreImage
AlternateFileSystemRoots: {}

Create Semantic Segmentation Network
This example uses a simple semantic segmentation network based on dilated convolutions.

Create a data source for training data and get the pixel counts for each label.

pximdsTrain = pixellLabelImageDatastore(imdsTrain,pxdsTrain);
tbl = countEachLabel(pximdsTrain)

tb1=2x3 table
Name PixelCount ImagePixelCount

{'triangle' } 10326 2.048e+05

1-55

1 reatured Examples

1-56

{'background'} 1.9447e+05 2.048e+05

The majority of pixel labels are for background. This class imbalance biases the learning process in
favor of the dominant class. To fix this, use class weighting to balance the classes. You can use several
methods to compute class weights. One common method is inverse frequency weighting where the
class weights are the inverse of the class frequencies. This method increases the weight given to
under represented classes. Calculate the class weights using inverse frequency weighting.

numberPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / numberPixels;
classWeights = 1 ./ frequency;

Create a network for pixel classification by using an image input layer with an input size
corresponding to the size of the input images. Next, specify three blocks of convolution, batch
normalization, and ReLU layers. For each convolutional layer, specify 32 3-by-3 filters with increasing
dilation factors and pad the inputs so they are the same size as the outputs by setting the 'Padding’
option to 'same'. To classify the pixels, include a convolutional layer with K 1-by-1 convolutions,
where K is the number of classes, followed by a softmax layer and a pixelClassificationlLayer
with the inverse class weights.

inputSize = [32 32 1];

filterSize = 3;

numFilters = 32;

numClasses = numel(classNames);
layers = [

imagelInputLayer(inputSize)

convolution2dLayer(filterSize,numFilters, 'DilationFactor',1, 'Padding', 'same")
batchNormalizationLayer
reluLayer

convolution2dLayer(filterSize,numFilters, 'DilationFactor',2, 'Padding’', 'same")
batchNormalizationLayer
reluLayer

convolution2dLayer(filterSize,numFilters, 'DilationFactor',4, 'Padding’', 'same")
batchNormalizationLayer
reluLayer

convolution2dLayer(1l,numClasses)

softmaxLayer

pixelClassificationLayer('Classes',classNames, 'ClassWeights', classWeights)];
Train Network
Specify the training options.
options = trainingOptions('sgdm’,

'MaxEpochs', 100,

'MiniBatchSize', 64,
'InitiallLearnRate', 1le-3);

Train the network using trainNetwork.

net = trainNetwork(pximdsTrain, layers,options);

Semantic Segmentation Using Dilated Convolutions

Training on single CPU.
Initializing input data

normalization.

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning
| | | (hh:mm:ss) | Accuracy | Loss | Rate

I

| 1| 1| 00:00:01 | 91.62% | 1.6825 | 0.0010
| 17 | 50 | 00:00:42 | 88.56% | 0.2393 | 0.0010
| 34 | 100 | 00:01:25 | 92.08% | 0.1672 | 0.0010
| 50 | 150 | 00:02:05 | 93.17% | 0.1472 | 0.0010
| 67 | 200 | 00:02:48 | 94.15% | 0.1313 | 0.0010
| 84 | 250 | 00:03:35 | 94.47% | 0.1166 | 0.0010
| 100 | 300 | 00:04:16 | 95.04% | 0.1100 | 0.0010
I

Test Network

Load the test data. Create an imageDatastore for the images. Create a pixelLabelDatastore for
the ground truth pixel labels.

imageFolderTest = fullfile(dataFolder, 'testImages');
imageDatastore(imageFolderTest);

labelFolderTest = fullfile(dataFolder, 'testlLabels');
pixelLabelDatastore(labelFolderTest,classNames, labels);

imdsTest

pxdsTest

Make predictions using the test data and trained network.

pxdsPred = semanticseg(imdsTest,net, 'MiniBatchSize',32, 'WritelLocation', tempdir);

Running semantic segmentation network

* Processed 100 images.

Evaluate the prediction accuracy using evaluateSemanticSegmentation.

metrics =

Evaluating semantic segmentation results

Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.

*

* Processed 100 images.
* Finalizing...

*

Done.

Data set metrics:

GlobalAccuracy

MeanAccuracy

MeanIoU

evaluateSemanticSegmentation(pxdsPred, pxdsTest);

WeightedIoU

MeanBFScore

0.95237

0.97352

0.72081

0.92889

0.46416

For more information on evaluating semantic segmentation networks, see
evaluateSemanticSegmentation.

Segment New Image

Read and display the test image triangleTest. jpg.

imgTest =
figure

imshow(imgTest)

imread('triangleTest.jpg');

1-57

1 reatured Examples

L 4 qu & nb
s (o8
4 A o = f = 4

¥ o4 a w4
= l[>"7’ e <] {]‘ﬁ?

Segment the test image using semanticseg and display the results using labeloverlay.

C = semanticseg(imgTest,net);
B = labeloverlay(imgTest,C);
figure

imshow(B)

A 4 a Ve 4 *t

I I a » 4
'#"““ 4 q=
s B ss &7
Ll N | v 9 e B
w
4 u

<
"h"-'-"* @
4

aa 8°

1-58

Define Custom Pixel Classification Layer with Tversky Loss

Define Custom Pixel Classification Layer with Tversky Loss

This example shows how to define and create a custom pixel classification layer that uses Tversky
loss.

This layer can be used to train semantic segmentation networks. To learn more about creating custom
deep learning layers, see “Define Custom Deep Learning Layers” (Deep Learning Toolbox).

Tversky Loss

The Tversky loss is based on the Tversky index for measuring overlap between two segmented images
[1 on page 1-0 1. The Tversky index TI. between one image Y and the corresponding ground truth T

is given by

M
2m =1YemTem
M M M
2m=1YemTem + a3m = 1 YemTem + B3m = 1 YemTem

Tl =

* ¢ corresponds to the class and ¢ corresponds to not being in class c.
* M is the number of elements along the first two dimensions of Y.

* a and p are weighting factors that control the contribution that false positives and false negatives
for each class make to the loss.

The loss L over the number of classes C is given by
C
L= > 1-Tl
c=1

Classification Layer Template

Copy the classification layer template into a new file in MATLAB®. This template outlines the
structure of a classification layer and includes the functions that define the layer behavior. The rest of
the example shows how to complete the tverskyPixelClassificationLayer.

classdef tverskyPixelClassificationlLayer < nnet.layer.ClassificationLayer
properties
% Optional properties

end
methods

function loss = forwardLoss(layer, Y, T)

% Layer forward loss function goes here
end

end
end

Declare Layer Properties

By default, custom output layers have the following properties:

1-59

1 reatured Examples

1-60

* Name - Layer name, specified as a character vector or a string scalar. To include this layer in a
layer graph, you must specify a nonempty unique layer name. If you train a series network with
this layer and Name is set to ' ', then the software automatically assigns a name at training time.

* Description - One-line description of the layer, specified as a character vector or a string scalar.
This description appears when the layer is displayed in a Layer array. If you do not specify a layer
description, then the software displays the layer class name.

* Type - Type of the layer, specified as a character vector or a string scalar. The value of Type
appears when the layer is displayed in a Layer array. If you do not specify a layer type, then the
software displays 'Classification layer' or 'Regression layer'.

Custom classification layers also have the following property:

* C(Classes - Classes of the output layer, specified as a categorical vector, string array, cell array of
character vectors, or 'auto'. If Classes is 'auto’, then the software automatically sets the
classes at training time. If you specify a string array or cell array of character vectors str, then
the software sets the classes of the output layer to categorical(str,str). The default value is
'auto'.

If the layer has no other properties, then you can omit the properties section.

The Tversky loss requires a small constant value to prevent division by zero. Specify the property,
Epsilon, to hold this value. It also requires two variable properties Alpha and Beta that control the
weighting of false positives and false negatives, respectively.

classdef tverskyPixelClassificationlLayer < nnet.layer.ClassificationLayer

properties(Constant)
% Small constant to prevent division by zero.
Epsilon = le-8;

end

properties
% Default weighting coefficients for false positives and false negatives
Alpha = 0.5;
Beta = 0.5;

end

end
Create Constructor Function

Create the function that constructs the layer and initializes the layer properties. Specify any variables
required to create the layer as inputs to the constructor function.

Specify an optional input argument name to assign to the Name property at creation.

function layer = tverskyPixelClassificationLayer(name, alpha, beta)
% layer = tverskyPixelClassificationLayer(name) creates a Tversky
% pixel classification layer with the specified name.

% Set layer name
layer.Name = name;

% Set layer properties
layer.Alpha = alpha;

Define Custom Pixel Classification Layer with Tversky Loss

layer.Beta = beta;

% Set layer description
layer.Description = 'Tversky loss';
end

Create Forward Loss Function

Create a function named forwardLoss that returns the weighted cross entropy loss between the
predictions made by the network and the training targets. The syntax for forwardLoss is loss =
forwardLoss(layer,Y,T), where Y is the output of the previous layer and T represents the
training targets.

For semantic segmentation problems, the dimensions of T match the dimension of Y, where Y is a 4-D
array of size H-by-W-by-K-by-N, where K is the number of classes, and N is the mini-batch size.

The size of Y depends on the output of the previous layer. To ensure that Y is the same size as T, you
must include a layer that outputs the correct size before the output layer. For example, to ensure that
Y is a 4-D array of prediction scores for K classes, you can include a fully connected layer of size K or
a convolutional layer with K filters followed by a softmax layer before the output layer.

function loss = forwardLoss(layer, Y, T)
% loss = forwardLoss(layer, Y, T) returns the Tversky loss between
% the predictions Y and the training targets T.

Pcnot = 1-Y;

Gecnot = 1-T;

TP = sum(sum(Y.*T,1),2);

FP = sum(sum(Y.*Gcnot,1),2);

FN = sum(sum(Pcnot.*T,1),2);

numer = TP + layer.Epsilon;

denom = TP + layer.Alpha*FP + layer.Beta*FN + layer.Epsilon;

% Compute Tversky index
lossTIc = 1 - numer./denom;
lossTI = sum(lossTIc,3);

% Return average Tversky index loss
N = size(Y,4);
loss = sum(lossTI)/N;

end

Backward Loss Function

As the forwardLoss function fully supports automatic differentiation, there is no need to create a
function for the backward loss.

For a list of functions that support automatic differentiation, see “List of Functions with dlarray
Support” (Deep Learning Toolbox).

Completed Layer

The completed layer is provided in tverskyPixelClassificationLayer.m.

classdef tverskyPixelClassificationlLayer < nnet.layer.ClassificationLayer
% This layer implements the Tversky loss function for training

1-61

1 reatured Examples

1-62

o°

semantic segmentation networks.

References

Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour.
"Tversky loss function for image segmentation using 3D fully
convolutional deep networks." International Workshop on Machine
Learning in Medical Imaging. Springer, Cham, 2017.

0° 0% o° o° o o°

properties(Constant)
% Small constant to prevent division by zero.
Epsilon = le-8;

end

properties
% Default weighting coefficients for False Positives and False
% Negatives
Alpha = 0.5;
Beta = 0.5;
end

methods

function layer = tverskyPixelClassificationLayer(name, alpha, beta)
% layer = tverskyPixelClassificationLayer(name, alpha, beta) creates a Tversky
% pixel classification layer with the specified name and properties alpha and beta.

% Set layer name.
layer.Name = name;

layer.Alpha = alpha;
layer.Beta = beta;

% Set layer description.
layer.Description = 'Tversky loss';
end

function loss = forwardLoss(layer, Y, T)
% loss = forwardLoss(layer, Y, T) returns the Tversky loss between
% the predictions Y and the training targets T.

Pcnot = 1-Y;
Gcnot = 1-T;
TP = sum(sum(Y.*T,1),2);

sum(sum(Y.*Gcnot,1),2);
sum(sum(Pcnot.*T,1),2);

'I'I
-
I nnu

numer
denom

TP + layer.Epsilon;
TP + layer.Alpha*FP + layer.Beta*FN + layer.Epsilon;

% Compute tversky index
lossTIc = 1 - numer./denom;
lossTI = sum(lossTIc,3);

% Return average tversky index loss.

Define Custom Pixel Classification Layer with Tversky Loss

N = size(Y,4);
loss = sum(lossTI)/N;

end
end
end

GPU Compatibility

The MATLAB functions used in forwardLoss in tverskyPixelClassificationlLayer all support
gpuArray inputs, so the layer is GPU compatible.

Check Output Layer Validity

Create an instance of the layer.

layer = tverskyPixelClassificationLayer('tversky',0.7,0.3);

Check the validity of the layer by using checkLayer. Specify the valid input size to be the size of a
single observation of typical input to the layer. The layer expects a H-by-W-by-K-by-N array inputs,
where K is the number of classes, and N is the number of observations in the mini-batch.

numClasses = 2;
validInputSize = [4 4 numClasses];
checkLayer(layer,validInputSize, 'ObservationDimension',4)

Skipping GPU tests. No compatible GPU device found.

Running nnet.checklayer.TestOutputLayerWithoutBackward

Test Summary:
8 Passed, 0 Failed, 0 Incomplete, 2 Skipped.
Time elapsed: 2.2151 seconds.

The test summary reports the number of passed, failed, incomplete, and skipped tests.
Use Custom Layer in Semantic Segmentation Network

Create a semantic segmentation network that uses the tverskyPixelClassificationLayer.

layers = [
imagelInputlLayer([32 32 1])
convolution2dLayer(3,64, 'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride',2)
convolution2dLayer(3,64, 'Padding',1)
reluLayer
transposedConv2dLayer(4,64, 'Stride',2, 'Cropping',1)
convolution2dLayer(1,2)
softmaxLayer
tverskyPixelClassificationLayer('tversky',0.3,0.7)]

layers =
11x1 Layer array with layers:

1-63

1 reatured Examples

1 t Image Input 32x32x1 images with 'zerocenter' normalization

2 v Convolution 64 3x3 convolutions with stride [1 1] and padding
3 t Batch Normalization Batch normalization

4 Y RelLU RelLU

5 t Max Pooling 2x2 max pooling with stride [2 2] and padding [0
6 Y Convolution 64 3x3 convolutions with stride [1 1] and padding
7 Y RelLU RelLU

8 t Transposed Convolution 64 4x4 transposed convolutions with stride [2 2]
9 n Convolution 2 1x1 convolutions with stride [1 1] and padding
10 n Softmax softmax

11 "tversky' Classification Output Tversky loss

Load training data for semantic segmentation using imageDatastore and pixellLabelDatastore.

= fullfile(toolboxdir('vision'), 'visiondata', 'triangleImages');
fullfile(dataSetDir, 'trainingImages');
fullfile(dataSetDir, 'traininglLabels"');

dataSetDir
imageDir =
labelDir =

imds = imageDatastore(imageDir);

classNames = ["triangle" "background"];
labelIDs = [255 0];
pxds = pixellLabelDatastore(labelDir, classNames, labellDs);

Associate the image and pixel label data by using pixelLabelImageDatastore.

ds = pixellLabelImageDatastore(imds,pxds);

Set the training options and train the network.

options = trainingOptions('adam',
'InitiallLearnRate', le-3,
'MaxEpochs', 100,
'LearnRateDropFactor',b5e-1,
'LearnRateDropPeriod', 20,
'LearnRateSchedule', 'piecewise’,
'MiniBatchSize',50);

net = trainNetwork(ds,layers,options);

Training on single CPU.
Initializing input data normalization.

I
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
[| | (hh:mm:ss) | Accuracy | Loss | Rate |
I I
1	1	00:00:02	50.32%	1.2933	0.0010
13	50	00:00:47	98.82%	0.0985	0.0010
25	100	00:01:31	99.32%	0.0545	0.0005
38	150	00:02:13	99.37%	0.0472	0.0005
50	200	00:02:51	99.48%	0.0401	0.0003
63	250	00:03:33	99.48%	0.0379	0.0001
75	300	00:04:10	99.54%	0.0348	0.0001
88	350	00:04:46	99.51%	0.0351	6.2500e-05
100	400	00:05:23	99.56%	0.0330	6.2500e-05
I I

Evaluate the trained network by segmenting a test image and displaying the segmentation result.

1-64

Define Custom Pixel Classification Layer with Tversky Loss

I = imread('triangleTest.jpg"');
[C,scores] = semanticseg(I,net);

B = labeloverlay(I,C);
montage({I,B})

‘ﬂ"-& qﬁ?qéfq\i\)‘(‘F’*J‘V
P . > p o >
P o g-:?{l , - . £v4
"Dy 4 4 (<

R Ror > S R $aey L
B AR e P : » A y - >
v a < 7 2 ¢
Y O P V) vV pa 7 v
4 4
38 % ‘d b A (7 L"j S - ‘ = & & ‘
References

[1] Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. "Tversky loss function for
image segmentation using 3D fully convolutional deep networks." International Workshop on Machine

Learning in Medical Imaging. Springer, Cham, 2017.

1-65

1 reatured Examples

Track a Face in Scene

1-66

Create System objects for reading and displaying video and for drawing a bounding box of the object.

videoReader
videoPlayer

VideoReader('visionface.avi');
vision.VideoPlayer('Position',[100,100,680,520]);

Read the first video frame, which contains the object, define the region.

objectFrame = readFrame(videoReader);
objectRegion = [264,122,93,93];

As an alternative, you can use the following commands to select the object region using a mouse. The
object must occupy the majority of the region:

figure; imshow(ohjectFrame);

objectRegion=round(getPosition(imrect))

Show initial frame with a red bounding box.

2pject1mage = insertShape(objectFrame, 'Rectangle',objectRegion, 'Color', 'red');
igure;

imshow(objectImage);
title('Red box shows object region');

Track a Face in Scene

Red box shows object region

Detect interest points in the object region.

points = detectMinEigenFeatures(rgb2gray(objectFrame), 'ROI',objectRegion);

Display the detected points.

1;3(_)intImage = insertMarker(objectFrame,points.Location, '+', 'Color', 'white');
igure;

imshow(pointImage);
title('Detected interest points');

1-67

1 reatured Examples

Detected interest points

Create a tracker object.

tracker = vision.PointTracker('MaxBidirectionalError',1);

Initialize the tracker.

initialize(tracker,points.Location,objectFrame);
Read, track, display points, and results in each video frame.

while hasFrame(videoReader)
frame = readFrame(videoReader);
[points,validity] = tracker(frame);
out = insertMarker(frame,points(validity, :),'+');
videoPlayer(out);
end

1-68

Track a Face in Scene

(] Video Player == =]
File Tools View Playback Help o
@ a9 B oe v

Processing RGE: 450x640 64

Release the video player.

release(videoPlayer);

1-69

1 reatured Examples

(] Video Player
File Tools View Playback

Q Q& B3 100%

Help

(= ==

RGE 480x640 G4

Create 3-D Stereo Display

Create 3-D Stereo Display

Load parameters for a calibrated stereo pair of cameras.
load('webcamsSceneReconstruction.mat')
Load a stereo pair of images.

I1
I2

imread('sceneReconstructionLeft.jpg');
imread('sceneReconstructionRight.jpg');

Rectify the stereo images.

[J1, J2] = rectifyStereoImages(Il, I2, stereoParams);

Create the anaglyph.

A = stereoAnaglyph(J1, J2);

Display the anaglyph. Use red-blue stereo glasses to see the stereo effect.

figure; imshow(A);

Lo

1-71

1 reatured Examples

Measure Distance from Stereo Camera to a Face

1-72

Load stereo parameters.
load('webcamsSceneReconstruction.mat');
Read in the stereo pair of images.

I1
I2

imread('sceneReconstructionLeft.jpg');
imread('sceneReconstructionRight.jpg');

Undistort the images.

I1
I2

undistortImage(Il,stereoParams.CameraParametersl);
undistortImage(I2,stereoParams.CameraParameters2);

Detect a face in both images.

faceDetector = vision.CascadeObjectDetector;
facel = faceDetector(Il);
face2 = faceDetector(I2);

Find the center of the face.

facel(1l:2) + facel(3:4)/2;
face2(1:2) + face2(3:4)/2;

centerl
center2

Compute the distance from camera 1 to the face.

point3d = triangulate(centerl, center2, stereoParams);
distanceInMeters = norm(point3d)/1000;

Display the detected face and distance.

distanceAsString = sprintf('%0.2f meters', distanceInMeters);

I1 = insertObjectAnnotation(Il1, 'rectangle’,facel,distanceAsString, 'FontSize',18);
I2 = insertObjectAnnotation(I2, 'rectangle',face2, distanceAsString, 'FontSize',18);
I1 = insertShape(Il, 'FilledRectangle', facel);

I2 = insertShape(I2, 'FilledRectangle’', face2);

imshowpair(Il, I2, 'montage');

Measure Distance from Stereo Camera to a Face

1-73

1 reatured Examples

Reconstruct 3-D Scene from Disparity Map

Load the stereo parameters.
load('webcamsSceneReconstruction.mat');
Read in the stereo pair of images.

I1
I2

imread('sceneReconstructionLeft.jpg');
imread('sceneReconstructionRight.jpg');

Rectify the images.
[J1, J2] = rectifyStereoImages(I1l,I2,stereoParams);

Display the images after rectification.

figure
imshow(cat(3,J1(:,:,1),32(:,:,2:3)), 'InitialMagnification',50);

Compute the disparity.
disparityMap = disparitySGM(rgb2gray(J1),rgb2gray(J2));

figure
imshow(disparityMap,[0,64], 'InitialMagnification',50);

1-74

Reconstruct 3-D Scene from Disparity Map

Reconstruct the 3-D world coordinates of points corresponding to each pixel from the disparity map.
xyzPoints = reconstructScene(disparityMap,stereoParams);

Segment out a person located between 3.2 and 3.7 meters away from the camera.

Z = xyzPoints(:,:,3);

mask = repmat(Z > 3200 & Z < 3700,[1,1,3]);

J1(~mask) = 0;
imshow(J1, 'InitialMagnification',50);

1-75

1 reatured Examples

1-76

Visualize Stereo Pair of Camera Extrinsic Parameters

Visualize Stereo Pair of Camera Extrinsic Parameters

Specify calibration images.
imageDir = fullfile(toolboxdir('vision'),'visiondata',
'calibration', 'stereo');

leftImages = imageDatastore(fullfile(imageDir, 'left'));
rightImages = imageDatastore(fullfile(imageDir, 'right'));
Detect the checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints(...
leftImages.Files, rightImages.Files);

Specify world coordinates of checkerboard keypoints. Square size is in millimeters.

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the stereo camera system. Both cameras have the same resolution.

I = readimage(leftImages,l);

imageSize = [size(I, 1), size(I, 2)];

cameraParams = estimateCameraParameters(imagePoints,worldPoints,
'ImageSize',imageSize);

Visualize pattern locations.

figure;
showExtrinsics(cameraParams);

1-77

1 reatured Examples

Extrinsic Parameters Visualization

Visualize camera locations.

figure;
showExtrinsics(cameraParams, 'patternCentric');

1-78

Visualize Stereo Pair of Camera Extrinsic Parameters

Extrinsic Parameters Visualization

-2000 -

-1500 .|

1000 -

Z (mm)

=500 .

0
Zﬂgﬂﬂ S0
Y (mm) X (mm)

1-79

1 reatured Examples

Remove Distortion from an Image Using the Camera
Parameters Object

Use the camera calibration functions to remove distortion from an image. This example creates a
vision.cameraParameters object manually, but in practice, you would use the
estimateCameraParameters or the Camera Calibrator app to derive the object.

Create a vision.cameraParameters object manually.

IntrinsicMatrix = [715.2699 0 0; 0 711.5281 0; 565.6995 355.3466 1];
radialDistortion = [-0.3361 0.0921];
cameraParams = cameraParameters('IntrinsicMatrix',IntrinsicMatrix, 'RadialDistortion', radialDisto

Remove distortion from the images.

I
J

imread(fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', 'calibration', 'mono', 'image@l. jpg
undistortImage(I, cameraParams);

Display the original and the undistorted images.

figure; imshowpair(imresize(I,0.5),imresize(J,0.5), 'montage');
title('Original Image (left) vs. Corrected Image (right)');

Original Image (left) vs. Corrected Image (right)
T

1-80

Point Cloud Processing

* “Getting Started with Point Clouds Using Deep Learning” on page 2-2
* “Point Cloud Registration Overview” on page 2-4
* “The PLY Format” on page 2-8

2 Point Cloud Processing

Getting Started with Point Clouds Using Deep Learning

2-2

Deep learning can automatically process point clouds for a wide range of 3-D imaging applications.
Point clouds typically come from 3-D scanners, such as a lidar or Kinect® devices. They have
applications in robot navigation and perception, depth estimation, stereo vision, surveillance, scene
classification, and in advanced driver assistance systems (ADAS).

Preprocess Object Detection,
Point Cloud Data (Augmentation and Densification) Segmentation,
Classification
" *"_' '-i L] - d

In general, the first steps for using point cloud data in a deep learning workflow are:

Import point cloud data. Use a datastore to hold the large amount of data.
Optionally augment the data.

Encode the point cloud to an image-like format consistent with MATLAB®-based deep learning
workflows.

You can apply the same deep learning approaches to classification, object detection, and semantic
segmentation tasks using point cloud data as you would using regular gridded image data. However,
you must first encode the unordered, irregularly gridded structure of point cloud and lidar data into a
regular gridded form. For certain tasks, such as semantic segmentation, some postprocessing on the
output of image-based networks is required in order to restore a point cloud structure.

Import Point Cloud Data

In order to work with point cloud data in deep learning workflows, first, read the raw data. Consider
using a datastore for working with and representing collections of data that are too large to fit in
memory at one time. Because deep learning often requires large amounts of data, datastores are an
important part of the deep learning workflow in MATLAB. For more details about datastores, see
“Datastores for Deep Learning” (Deep Learning Toolbox).

The “Import Point Cloud Data For Deep Learning” example imports a large point cloud data set, and
then configures and loads a datastore.

Augment Data

The accuracy and success of a deep learning model depends on large annotated datasets. Using
augmentation to produce larger datasets helps reduce overfitting. Overfitting occurs when a

Getting Started with Point Clouds Using Deep Learning

classification system mistakes noise in the data for a signal. By adding additional noise, augmentation
helps the model balance the data points and minimize the errors. Augmentation can also add
robustness to data transformations which may not be well represented in the original training data,
(for example rotation, reflection, translations). And by reducing overfitting, augmentation can often
lead to better results in the inference stage, which makes predictions based on what the deep
learning neural network has been trained to detect.

The “Augment Point Cloud Data For Deep Learning” example setups a basic randomized data
augmentation pipeline that works with point cloud data.

Encode Point Cloud Data to Image-like Format

To use point clouds for training with MATLAB-based deep learning workflows, the data must be
encoded into a dense, image-like format. Densification or voxelization is the process of transforming
an irregular, ungridded form of point cloud data to a dense, image-like form.

The “Encode Point Cloud Data For Deep Learning” example transforms point cloud data into a dense,
gridded structure.

Train a Deep Learning Classification Network with Encoded Point
Cloud Data

Once you have encoded point cloud data into a dense form, you can use the data for an image-based
classification, object detection, or semantic segmentation task using standard deep learning
approaches.

The “Train Classification Network to Classify Object in 3-D Point Cloud” example preprocesses point
cloud data into a voxelized encoding and then uses the image-like data with a simple 3-D
convolutional neural network to peform object classification.

See Also
pcregistercpd | pcregistericp | pcregisterndt

Related Examples

. “3-D Point Cloud Registration and Stitching”

. “Build a Map from Lidar Data” (Automated Driving Toolbox)
. “Object Detection Using YOLO v2 Deep Learning”

. “Object Detection Using SSD Deep Learning”

. “Object Detection Using Faster R-CNN Deep Learning”

More About

. “Getting Started with Object Detection Using Deep Learning” on page 7-6

. “Getting Started with YOLO v2” on page 7-19

. “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” on page 7-23
. “Getting Started with SSD Multibox Detection” on page 7-2

2-3

2 Point Cloud Processing

Point Cloud Registration Overview

2-4

A point cloud is a set of points in 3-D space. Point clouds are typically obtained from 3-D scanners,
such as a lidar or Kinect device. They have applications in robot navigation and perception, depth
estimation, stereo vision, visual registration, and in advanced driver assistance systems (ADAS).
Computer Vision Toolbox algorithms provide functions that are integral to the point cloud registration
workflow. The workflow includes the use of point cloud functions pcmerge, pcdownsample,
pctransform, and pcdenoise and multiple registration functions pcregistericp,
pcregistercpd, and pcregisterndt.

Point cloud registration is the process of aligning two or more 3-D point clouds of the same scene. It
enables you to integrate 3-D data from different sources into a common coordinate system. The
registration process can include reconstructing a 3-D scene from a Kinect device, building a map of a
roadway for automobiles, and deformable motion tracking.

Point Cloud Registration Process

The point cloud registration process includes these three steps.

1 Preprocessing — Remove noise or unwanted objects in each point cloud. Downsample the point
clouds for a faster and more accurate registration.
Registration — Register two or more point clouds.
Alignment and stitching — Optionally stitch the point clouds by transforming and merging them.

Point Cloud Registration Overview

Moving Point Cloud Fixed Point Cloud

Remove m.rﬂlers Optionsl Remove outliers
pcdenoise Slow podencise

Downsample _— Downsample
it
podownsample podownsample

| |

Register
pcregistericp

pcregistercpd
pcregizsterndt

Preprocess

Registration

Optionzl
Alignment
poctranaform

Gheck slignment
Optiona/

Merge
pCmET g

Stifch poinf clouds

Alignment & Stitching

Point Cloud Registration Methods

You can use the pcregistericp, pcregistercpd, or pcregisterndt function to register a
moving point cloud to a fixed point cloud. The registration algorithms used by these functions are
based on the iterative closest point (ICP) algorithm, the coherent point drift (CPD) algorithm, and the

2-5

2 Point Cloud Processing

2-6

normal-distributions transform (NDT) algorithm, respectively. For more information on these
algorithms, see “References” on page 2-7.

When registering a point cloud you can choose the type of transformation that represents how objects
in the scene change between point clouds.

Transformation

Description

Rigid The rigid transformation preserves the shape and size of objects in
the scene. Objects in the scene can undergo translations, rotations, or
both. The same transformation is applied to all points.

Affine The Affine transformation allows the objects to shear and change
scale in addition to translations and rotations.

Non-rigid The non-rigid transformation allows the shape of objects in the scene

to change. Points are transformed differently. A displacement field is
used to represent the transformation.

This table compares the point cloud registration function options, their transformation types, and
their performance characteristics. Use this table to select the appropriate registration function based

on your case..

Registration Method
(function)

Transformation Type

Description

Performance
Characteristics

pcregisterndt

Rigid

* Local registration
method that relies
on an initial
transform estimate

* Robust to outliers

* Better with point
clouds of differing
resolutions and
densities

Fast registration
method, but generally
slower than ICP

pcregistericp

Rigid

Local registration
method that relies on an
initial transform
estimate

Fastest registration
method

pcregistercpd

Rigid, affine, and non-
rigid

Global method that does
not rely on an initial
transformation estimate

Slowest registration
method

Tips

+ To improve the accuracy and computation speed of registration, downsample the point clouds
using the pcdownsample function before registration.

* Remove unnecessary features from the point cloud by using functions such as:

* segmentGroundFromLidarData — Segment ground points from organized lidar data

* pcsegdist — Segment point cloud into clusters based on Euclidean distance

+ pcfitplane — Fit plane to 3-D point cloud

Point Cloud Registration Overview

* select — Select points in a point cloud

* Local registration methods, such as those that use NDT or ICP (pcregisterndt or
pcregistericp, respectively), require initial estimates. To obtain an initial estimate use another
sensor, such as an inertial measurement unit (IMU) or other forms of odometry. Improving the
initial estimate helps the registration algorithm converge faster.

* Increase the 'MaxIterations' property or decrease the 'Tolerance' property for more
accurate registration results, but slower registration speeds.

References

[1] Myronenko, A., and X. Song. "Point Set Registration: Coherent Point Drift. "Proceedings of IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Vol. 32, Number 12,
December 2010, pp. 2262-2275.

[2] Chen, Y. and G. Medioni. “Object Modelling by Registration of Multiple Range Images.” Image
Vision Computing. Butterworth-Heinemann . Vol. 10, Issue 3, April 1992, pp. 145-155.

[3] Besl, Paul J.,, N. D. McKay. “A Method for Registration of 3-D Shapes.” IEEE Transactions on
Pattern Analysis and Machine Intelligence. Los Alamitos, CA: IEEE Computer Society. Vol. 14,
Issue 2, 1992, pp. 239-256.

[4] Biber, P, and W. StralSer. “The Normal Distributions Transform: A New Approach to Laser Scan
Matching.” Proceedings of IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS). Las Vegas, NV. Vol. 3, November 2003, pp. 2743-2748.

[5] Magnusson, M. “The Three-Dimensional Normal-Distributions Transform — an Efficient
Representation for Registration, Surface Analysis, and Loop Detection.” Ph.D. Thesis. Orebro
University, Orebro, Sweden, 2013.

See Also
pcregistercpd | pcregistericp | pcregisterndt

Related Examples
. “3-D Point Cloud Registration and Stitching”
. “Build a Map from Lidar Data” (Automated Driving Toolbox)

2-7

2 Point Cloud Processing

The PLY Format

In this section...

“File Header” on page 2-8
“Data” on page 2-9

“Common Elements and Properties” on page 2-10

The version 1.0 PLY format, also known as the Stanford Triangle Format, defines a flexible and
systematic scheme for storing 3D data. The ASCII header specifies what data is in the file by defining
"elements" each with a set of "properties." Many PLY files only have vertex and face data, however, it

is possible to also include other data such as color information, vertex normals, or application-specific
properties.

Note The Computer Vision Toolbox point cloud data functions only support the (x,y,z) coordinates,
normals, and color properties.

File Header

An example header (italicized text is comment):

ply file ID

format binary big endian 1.0 specify data format and version
element vertex 9200 define "vertex" element
property float x

property float y

property float z

element face 18000 define "face" element

property list uchar int vertex indices

end header data starts after this line

The file begins with "ply," identifying that it is a PLY file. The header must also include a format line
with the syntax

format <data format> <PLY version>

Supported data formats are "ascii" for data stored as text and "binary little endian" and
"binary big endian" for binary data (where little/big endian refers to the byte ordering of multi-byte
data). Element definitions begin with an "element" line followed by element property definitions
element <element name><number in file>

property <data type><property name 1>

property <data type><property name 2>

property <data type><property name 3>

2-8

The PLY Format

For example, "element vertex 9200" defines an element "vertex" and specifies that 9200 vertices are
stored in the file. Each element definition is followed by a list of properties of that element. There are
two kinds of properties, scalar and list. A scalar property definition has the syntax

property <data type><property name>

where <data type> is

Name Type

char (8-bit) character

uchar (8-bit) unsigned character
short (16-bit) short integer

ushort (16-bit) unsigned short integer
int (32-bit) integer

uint (32-bit) unsigned integer

float (32-bit) single-precision float
double (64-bit) double-precision float

For compatibility between systems, note that the number of bits in each data type must be consistent.
A list type is stored with a count followed by a list of scalars. The definition syntax for a list property
is

property list <count data type><data type><property name>
For example,
property list uchar int vertex index

defines vertex index properties are stored starting with a byte count followed by integer values. This
is useful for storing polygon connectivity as it has the flexibility to specify a variable number of vertex
indices in each face.

The header can also include comments. The syntax for a comment is simply a line beginning with
"comment" followed by a one-line comment:

comment<comment text>

Comments can provide information about the data like the file's author, data description, data source,
and other textual data.

Data

Following the header, the element data is stored as either ASCII or binary data (as specified by the
format line in the header). After the header, the data is stored in the order the elements and
properties were defined. First, all the data for the first element type is stored. In the example header,
the first element type is "vertex" with 9200 vertices in the file, and with float properties "x," "y," and
"Z_"

float vertex[1].x

2-9

2 Point Cloud Processing

float vertex[1].y

float vertex[1].z

float vertex[2].x

float vertex[2].y

float vertex[2].z

float vertex[9200].x

float vertex[9200].y

float vertex[9200].z

In general, the properties data for each element is stored one element at a time.

<property 1><property 2> ... <property N> element[1]

<property 1><property 2> ... <property N> element[2]

The list type properties are stored beginning with a count and followed by a list of scalars. For
example, the "face" element type has the list property "vertex indices" with uchar count and int
scalar type.

uchar count

int face[1].vertex indices[1]

int face[1].vertex indices[2]

int face[l].vertex indices[3]

int face[1].vertex indices[count]

uchar count

int face[2].vertex indices[1]

int face[2].vertex indices[2]

int face[2].vertex indices[3]

int face[2].vertex indices[count]

Common Elements and Properties
While the PLY format has the flexibility to define many types of elements and properties, a common

set of elements are understood between programs to communicate common 3-D data types. Turk
suggests elements and property names that programs should try to make standard.

2-10

The PLY Format

Requir (Elemen |Property Data Type Property Description
ed t
Core
Proper
ty
v vertex |[x float X,y,Z coordinates
v y float
v z float
nx float x,y,Zz of normal
ny float
nz float
red uchar vertex color
green uchar
blue uchar
alpha uchar amount of transparency
material index |int index to list of materials
face vertex indices |list of int indices to vertices
back red uchar backside color
back green uchar
back blue uchar
edge vertex1 int index to vertex
vertex?2 int index to other vertex
crease tag uchar crease in subdivision surface
materia |red uchar material color
1
green uchar
blue uchar
alpha uchar amount of transparency
reflect_coeff float amount of light reflected
refract coeff float amount of light refracted
refract index |float index of refraction
extinct coeff float extinction coefficent
See Also

pcread | pcwrite

2-11

Using the Installer for Computer Vision
System Toolbox Product

* “Install Computer Vision Toolbox Add-on Support Files” on page 3-2

* “Install OCR Language Data Files” on page 3-3

» “Install and Use Computer Vision Toolbox OpenCV Interface” on page 3-6

* “Install and Use Computer Vision Toolbox OpenCV Interface for Simulink” on page 3-10
* “Smile Detection by Using OpenCV Code in Simulink” on page 3-19

* “Convert RGB Image to Grayscale Image by Using OpenCV Importer” on page 3-29

» “Draw Different Shapes by Using OpenCV Code in Simulink” on page 3-36

3 Using the Installer for Computer Vision System Toolbox Product

Install Computer Vision Toolbox Add-on Support Files

3-2

After you install third-party support files, you can use the data with the Computer Vision Toolbox
product. To install the Add-on support files, use one of the following methods:

* 4" Get Support Package Now

* Select Get Add-ons from the Add-ons drop-down menu from the MATLAB desktop. The Add-on
files are in the “MathWorks Features” section.

* Type visionSupportPackages in a MATLAB Command Window and follow the prompts.

Note You must have write privileges for the installation folder.

When a new version of MATLAB software is released, repeat this process to check for updates. You
can also check for updates between releases.

Install OCR Language Data Files

Install OCR Language Data Files

In this section...

“Installation” on page 3-3

“Pretrained Language Data and the ocr function” on page 3-3

OCR Language Data files contain pretrained language data from the OCR Engine, tesseract-ocr, to
use with the ocr function.

Installation

After you install third-party support files, you can use the data with the Computer Vision Toolbox
product. To install the Add-on support files, use one of the following methods:

* 4'. Get Support Package Now

» Select Get Add-ons from the Add-ons drop-down menu from the MATLAB desktop. The Add-on
files are in the “MathWorks Features” section.

* Type visionSupportPackages in a MATLAB Command Window and follow the prompts.

Note You must have write privileges for the installation folder.

When a new version of MATLAB software is released, repeat this process to check for updates. You
can also check for updates between releases.

Pretrained Language Data and the ocr function

After you install the pretrained language data files, you can specify one or more additional languages
using the Language property of the ocr function. Use the appropriate language character vector
with the property.

txt = ocr(img, 'Language', 'Finnish');
List of OCR language data in support package

+ 'Afrikaans'

* 'Albanian'

* 'AncientGreek'
* 'Arabic'’

* 'Azerbaijani'
* 'Basque'

*+ 'Belarusian'

*+ 'Bengali'

* 'Bulgarian'

+ 'Catalan'

3-3

https://github.com/tesseract-ocr/tessdata

3 Using the Installer for Computer Vision System Toolbox Product

* 'Cherokee’

* 'ChineseSimplified'
* 'ChineseTraditional'
* 'Croatian'

+ 'Czech'

* 'Danish'
* 'Dutch'’

« 'English'

+ 'Esperanto'

* 'EsperantoAlternative'
* 'Estonian'

* 'Finnish'

* 'Frankish'

* 'French'

*+ 'Galician'

« 'German'
* 'Greek'
* 'Hebrew'
* 'Hindi'

* 'Hungarian'

+ 'Icelandic'

* 'Indonesian'

+ 'Italian'

« 'ItalianOld’

* 'Japanese’

+ 'Kannada'

* 'Korean'

* 'Latvian'
 'Lithuanian'

* 'Macedonian'

*+ 'Malay'

* 'Malayalam'

*+ 'Maltese'’

* 'MathEquation'
* 'MiddleEnglish’
* 'MiddleFrench'
* 'Norwegian'

* 'Polish'

* 'Portuguese'

3-4

Install OCR Language Data Files

'Romanian'
'Russian'
'SerbianLatin'
'Slovakian'
'Slovenian'
'Spanish’
'Spanish0ld’
'Swahili'
'Swedish'
'Tagalog'
'Tamil'
'Telugu'
'Thai'
'Turkish'
'Ukrainian'

See Also

OCR Trainer | ocr | visionSupportPackages

Related Examples

“Recognize Text Using Optical Character Recognition (OCR)”

3 Using the Installer for Computer Vision System Toolbox Product

Install and Use Computer Vision Toolbox OpenCV Interface

3-6

Use the OpenCV Interface files to integrate your OpenCV C++ code into MATLAB and build MEX-files
that call OpenCV functions. The support package also contains graphics processing unit (GPU)
support.

In this section...

“Installation” on page 3-6

“Support Package Contents” on page 3-6

“Create MEX-File from OpenCV C++ file” on page 3-7
“Use the OpenCV Interface C++ API” on page 3-7
“Create Your Own OpenCV MEX-files” on page 3-8

“Run OpenCV Examples” on page 3-8

Installation

After you install third-party support files, you can use the data with the Computer Vision Toolbox
product. To install the Add-on support files, use one of the following methods:

B 1 Get Support Package Now

» Select Get Add-ons from the Add-ons drop-down menu from the MATLAB desktop. The Add-on
files are in the “MathWorks Features” section.

* Type visionSupportPackages in a MATLAB Command Window and follow the prompts.

Note You must have write privileges for the installation folder.

When a new version of MATLAB software is released, repeat this process to check for updates. You
can also check for updates between releases.

Support Package Contents

The OpenCV Interface support files are installed in the visionopencv folder. To find the path to this
folder, type the following command:

fileparts(which('mex0penCV'))

The visionopencyv folder contain these files and folder.

Files Contents

example folder |Template Matching, Foreground Detector, and Oriented FAST and Rotated BRIEF
(ORB) examples, including a GPU version. Each subfolder in the example folder
contains a README . txt file with step-by-step instructions.

registry folder |Registration files.

mex0penCV.m file |Function to build MEX-files.

Install and Use Computer Vision Toolbox OpenCV Interface

Files Contents

README . txt file |Help file.

The mex function uses prebuilt OpenCV libraries, which ship with the Computer Vision Toolbox
product. Your compiler must be compatible with the one used to build the libraries. The following
compilers are used to build the OpenCV libraries for MATLAB host:

Operating System Compatible Compiler

Windows® 64 bit Microsoft® Visual Studio® 2015 Professional or Visual Studio 2017
Linux® 64 bit gcc-4.9.3 (g++)

Mac 64 bit Xcode 6.2.0 (Clang++)

Create MEX-File from OpenCV C++ file

This example creates a MEX-file from a wrapper C++ file and then tests the newly created file. The
example uses the OpenCV template matching algorithm wrapped in a C++ file, which is located in
the example/TemplateMatching folder.

1 Change your current working folder to the example/TemplateMatching folder:

cd(fullfile(fileparts(which('mex0OpenCV')), 'example', filesep, 'TemplateMatching'))
2 Create the MEX-file from the source file:

mex0penCV matchTemplateOCV.cpp

3 Run the test script, which uses the generated MEX-file:

testMatchTemplate

Use the OpenCV Interface C++ API

The mex0OpenCV interface utility functions convert data between OpenCV and MATLAB. These
functions support CPP-linkage only. GPU support is available on glnxa64, win64, and Mac platforms.

The GPU-specific utility functions support CUDA enabled NVIDIA GPU with compute capability 2.0 or
higher. See the Parallel Computing Toolbox™ System Requirements, The GPU utility functions require
the Parallel Computing Toolbox software.

Function

Description

ocvCheckFeaturePointsStruct

Check that MATLAB struct represents feature points

ocvStructToKeyPoints Convert MATLAB feature points struct to OpenCV
KeyPoint vector

ocvKeyPointsToStruct Convert OpenCV KeyPoint vector to MATLAB struct

ocvMxArrayToCvRect Convert a MATLAB struct representing a rectangle to an
OpenCV CvRect

ocvCvRectToMxArray Convert OpenCV CvRect to a MATLAB struct

ocvCvBox2DToMxArray Convert OpenCV CvBox2D to a MATLAB struct

ocvCvRectToBoundingBox {DataType}

Convert vector<cv: :Rect> to M-by-4 mxArray of
bounding boxes

https://www.mathworks.com/products/availability.html#DM

3 Using the Installer for Computer Vision System Toolbox Product

Function Description

ocvMxArrayToSize {DataType} Convert 2-element mxArray to cv: :Size

ocvMxArrayToImage {DataType} Convert column major mxArray to row major cv: :Mat for
image

ocvMxArrayToMat {DataType} Convert column major mxArray to row major cv: :Mat for
generic matrix

ocvMxArrayFromImage {DataType} Convert row major cv: :Mat to column major mxArray for
image

ocvMxArrayFromMat {DataType} Convert row major cv: :Mat to column major mxArray for
generic matrix.

ocvMxArrayFromVector Convert numeric vectorT to mxArray

ocvMxArrayFromPoints2f Converts vector<cv: :Point2f> to mxArray

GPU Function Description

ocvMxGpuArrayToGpuMat {DataType} Create cv: :gpu: :GpuMat from gpuArray

ocvMxGpuArrayFromGpuMat {DataType} Create gpuArray from cv: :gpu: :GpuMat

3-8

Create Your Own OpenCV MEX-files

Call the mxArray function with your source file.

mex0penCV yourfile.cpp

For help creating MEX files, at the MATLAB command prompt, type:
help mexOpenCV

Run OpenCV Examples

Each example subfolder in the OpenCV Interface support package contains all the files you need to
run the example. To run an example, you must call the mex0penCV function with one of the supplied
source files.

Run Template Matching Example

1 Change your current working folder to the example/TemplateMatching folder:

cd(fullfile(fileparts(which('mex0OpenCV')), 'example', filesep, 'TemplateMatching'))
2 Create the MEX-file from the source file:

mex0penCV matchTemplateOCV.cpp
3 Run the test script, which uses the generated MEX-file:

testMatchTemplate
Run Foreground Detector Example

1 Change your current working folder to the example/ForegroundDetector folder:

cd(fullfile(fileparts(which('mex0OpenCV')), 'example',filesep, 'ForegroundDetector'))

Install and Use Computer Vision Toolbox OpenCV Interface

Create the MEX-file from the source file:

mex0penCV backgroundSubtractorOCV.cpp
Run the test script that uses the generated MEX-file:

testBackgroundSubtractor.m

Run Oriented FAST and Rotated BRIEF (ORB) Detector Example

1

Change your current working folder to the example/O0RB folder:

cd(fullfile(fileparts(which('mexOpenCV')), 'example',filesep, 'ORB'))
Create the MEX-file for the detector from the source file:

mex0penCV detectORBFeaturesOCV.cpp
Create the MEX-file for the extractor from the source file:

mex0penCV extractORBFeaturesOCV.cpp
Run the test script, which uses the generated MEX-files:

testORBFeaturesOCV.m

Run Detect ORB Features (GPU Version) Example

1

Change your current working folder to the example/ORB_GPU folder:

cd(fullfile(fileparts(which('mex0OpenCV')), 'example', filesep, 'ORB GPU'))
Create the MEX-file for the detector from the source file.

PC:
mex0penCV detectORBFeaturesOCV _GPU.cpp -lgpu -lmwocvgpumex -largeArrayDims
Linux/Mac:

mex0penCV detectORBFeaturesOCV_GPU.cpp -lmwgpu -lmwocvgpumex -largeArrayDims
Run the test script, which uses the generated MEX-file:

testORBFeaturesOCV _GPU.m

See Also
“C Matrix API” (MATLAB) | mxArray

More About

“Install Computer Vision Toolbox Add-on Support Files” on page 3-2
Using OpenCV with MATLAB

3-9

https://www.mathworks.com/videos/using-opencv-with-matlab-97710.html

3 Using the Installer for Computer Vision System Toolbox Product

Install and Use Computer Vision Toolbox OpenCV Interface for
Simulink

3-10

In this section...

“Installation” on page 3-10
“Import OpenCV Code into Simulink” on page 3-10

“Limitations” on page 3-18

You can import OpenCV code to a Simulink model by using the OpenCV Importer application. The
OpenCV Importer application is available only after you install the Computer Vision Toolbox
OpenCV Interface for Simulink support package.

Installation

To install the support package, first click the Add-Ons drop-down list on the MATLAB Home tab, and
then select Get Add-0Ons. In the Add-Ons Explorer window, find and click the Computer Vision
Toolbox OpenCV Interface for Simulink support package, and then click Install.

Import OpenCV Code into Simulink

To start the OpenCV Importer, click Apps on the MATLAB Toolstrip. Click the down arrow to show
more options. Under Code Generation, click the OpenCV Importer app icon. The OpenCV import
wizard opens to a Welcome page.

1 In the Project name field, specify a name for your import. You can either start a new import or
load files saved from a previous import. To browse a saved file from previous import, select Load
a file saved from a previous import. Click Next.

Install and Use Computer Vision Toolbox OpenCV Interface for Simulink

MATLAB R2020a - O x

OpenCV Code Import Wizard helps you create Simulink Blocks from your C++ OpenCV functions.
The OpenCV Import Wizard tool:

= Asks a few questions about your OpenCV C++ functions

« Validates your library against missing functions or variables

» Creates Simulink blocks at the end.
You may save your settings into a file and start over later. Do you want to start a new import?

Project name: untitled

@ Start a new import

) Load a file saved from a previous import

MNext

2 In the Specify OpenCV Library page, specify your C++ library information. If you import a
previously saved project file, then all the fields are autopopulated.

* Project root folder: A writable folder path where you want to save your output files
(Wrapper files and Simulink library).

* Source files: OpenCV source file path. Specify the . cpp file format. If an absolute path is
provided, then the wizard uses the file from the specified location. If the absolute path is not
provided, then the wizard uses the path relative to the project root.

* Include files: Header files path. Specify the . hpp file format. If an absolute path is provided,
then the wizard uses the file from the specified location. If the absolute path is not provided,
then the wizard uses the path relative to the project root.

* Include paths: Define any additional OpenCV specific include folders. (Folder information). If
you do not specify any include folders, then the default folder path is used.

* Library paths: Specify the path to external library files.

Use a semicolon-separated list of files or folders if you have multiple files or folders to specify.
Click Next.

3-11

3 Using the Installer for Computer Vision System Toolbox Product

[*a] maTLAB R2020a - | X
Welcome > Specify OpenCV Library
What to consider
Specify your OpenCV library information. Specify your OpenCV library information. Use '’ to
separate multiple files or directories. "Project root folder”
(; z is the working directory that holds all generated files and
- : || Browse |
Project root folder. l Il / imported library model. Recommend using relative
) I B == paths to "Project root folder” to specify C code files and
Source files: ' ” ki) directories. At least 1 source file and 1 include file must
. ~ be specified.
Include files: | || Browse |
Include paths: | || Browse |
Library paths | || Browse |
Back Save | MNext |

3 To find functions and types that are supported for import, analyze your library by clicking Next.
Once the analysis is done, click Next.

3-12

Install and Use Computer Vision Toolbox OpenCV Interface for Simulink

MATLAB R2020a - O X

Welcome > Specify OpenCV Library

We will analyze your library to find functions and types that may be imported.

Back Save Next

4 In the What to Import page, all the functions or subset of the functions are listed. Select the
functions that you want to import into Simulink library and click Next.

3-13

3 Using the Installer for Computer Vision System Toolbox Product

MATLAB R2020a

Welcome E Specify OpenCV Library

What to consider

Select functions you want to import. Select all functions or a subset of functions to be
imported into Simulink library. Some functions may not

Name be imported due to limitations.

7 void pt_test(cv::Point2i * out, cv::Point2f * fout, cv::Point2d *
dout)
void create_pt_f(cv::Point2f * out)

Back Save MNext

5 Each I/O Type corresponds to the OpenCV function argument to map into the Simulink model. To
select the input/output types, double-click the Output option in the I/O Type column drop-down

3-14

Install and Use Computer Vision Toolbox OpenCV Interface for Simulink

list, and then click Next.
MATLAB R2020a - O %

Welcome > Specify OpenCV Library > What to import

What to consider

Select types you want to import. Select all types or a subset of types to be imported into
Simulink library. Some types must be imported if they
are used by imported functions.

Function Name Argument Name Type Name 11O Type
w pt_test
out cv: Point2i Output
fout cv::Point2f Output
dout cv::Point2d Output
Back Save MNext

6 In the Create Simulink Library page, you can generate either just a subsystem block or a
subsystem block and a C Caller block of the selected function. A C Caller block integrates your
OpenCV data into Simulink. The generated subsystem block contains C Caller blocks configured
by using data conversion blocks.

To generate a subsystem block and a C caller block, select Create a single C-caller block for
the OpenCV function, and then click Next.

If the OpenCV code contains Mat data type, the default output size is (720,1280, 3) and the
default underlying type is uint8. For vectors, the default size is 100.

3-15

3 Using the Installer for Computer Vision System Toolbox Product

MATLAB R2020a - O *

Welcome > Specify OpenCV Library > What to import Create Simulink Library

Default values for OpenCV types.

Create a single C-caller block for the OpenCV function

Default CV::Mat Type's Output Size is 720,1280.3
| 720,1280,3

Default CV::Mat Type's Underlying Type is uints uinta

Default Vector Size | 100

Back Save MNext

7 A Simulink library Projectname OpenCVCallerLib.slx is created from your OpenCV code
into a project root folder. The library contains the subsystem block and the C caller block.

3-16

Install and Use Computer Vision Toolbox OpenCV Interface for Simulink

LIBRARY DEBUG MODELING FORMAT APPS
1 Open = i ﬁ_‘“ﬂ
== - (=] N = =
ave = i - g : - :
New Library Hog Signal Viewers Unlocked Lock | Show Annotations
~ =4 Print ¥ Browser £l 1kl Table Manager Library Links 1 Library Browse
FILE LIERARY PREPARE PROTECT ANNOTATION
Testl_OpenCWCallerLib
@® |[PalTest1_opencvcalierLib
_ outt } out }
I:‘ out2 > slwrap_pt_tesfout >
out3 [y dout [
subsystem_slwrap_pt_test shwrap_pt_test

The wizard also creates wrapper files for source and header files.

3-17

3 Using the Installer for Computer Vision System Toolbox Product

s _
MATLAB R2020 O pad

Welcome > Specify OpenCV Library > What to import > Create Simulink Library

A Simulink library is created from your C/C++ library into project root folder:
C\Users\Deskiop
Files generated:

« View generated Wrapper header file

« View generated Wrapper source file

Back Save Finish

Limitations

The Computer Vision Toolbox OpenCV Interface for Simulink support package:

* Uses OpenCV shipped as part of the MATLAB third-party support. You can get the OpenCV
additional capabilities in Add-Ons (Computer Vision Toolbox).

* Does not support external OpenCV libraries (e.g. opencv_contrib).

* Does not support InputArrary, OutputArray, and InputOutputArray data type.

* Requires Microsoft Visual Studio 2015 Professional or Microsoft Visual Studio 2017 for Windows
64 operating system. For more information on compilers, see Compiler used to build OpenCV
libraries.

See Also
FromOpenCV | ToOpenCV

More About

. “Smile Detection by Using OpenCV Code in Simulink” on page 3-19
. “Convert RGB Image to Grayscale Image by Using OpenCV Importer” on page 3-29
. “Draw Different Shapes by Using OpenCV Code in Simulink” on page 3-36

3-18

Smile Detection by Using OpenCV Code in Simulink

Smile Detection by Using OpenCV Code in Simulink

In this section...

“Required Products” on page 3-19

“Set Up Your C++ Compiler” on page 3-19

“Model Description” on page 3-19

“Step 1: Import OpenCV Function to Create a Simulink Library” on page 3-20
“Step 2: Use Generated Subsystem in Simulink Model” on page 3-25

“Step 3: Simulate the Smile Detector” on page 3-26

“Step 4: Generate C++ Code from the Smile Detector Model” on page 3-26
“Deploy the Smile Detector on the Raspberry Pi Hardware” on page 3-27

This example shows how to build a smile detector by using the OpenCV Importer. The detector
estimates the intensity of the smile on a face image. Based on the estimated intensity, the detector
identifies an appropriate emoji from its database, and then places the emoji on the smiling face.

In this example, you first import an OpenCV function into Simulink by using OpenCV Code Import
Wizard on page 3-10. The wizard creates a Simulink library that contains a subsystem and a C Caller
block for the specified OpenCV function. The subsystem is then used in a preconfigured Simulink
model to accept the face image for smile detection. You can generate C++ code from the model, and
then deploy the code on your target hardware.

In this example, you learn how to:

* Import an OpenCV function into a Simulink library.

* Use blocks from a generated library in a Simulink model.
* Generate C++ code from a Simulink model.

* Deploy the model on the Raspberry Pi hardware.

Required Products

* Computer Vision Toolbox OpenCV Interface for Simulink
* Computer Vision Toolbox

* Embedded Coder®

Set Up Your C++ Compiler

To build the OpenCV libraries, identify a compatible C++ compiler for your operating system, as
described in Compiler used to build OpenCV libraries. Configure the identified compiler by using the
mex -setup c++ command. For more information, see Choose a C++ Compiler.

Model Description
In this example, a smile detector is implemented by using the Simulink model smileDetect.slx.

In this model, the subsystem slwrap detectAndDraw subsystem resides in the
Smile Detect OpenCVCallerLib library. You create the subsystem slwrap detectAndDraw

3-19

3 Using the Installer for Computer Vision System Toolbox Product

subsystem by using the OpenCV Importer. The subsystem accepts a face image from the Image
From Workspace block and provides these output values.

Output Port Description

Outl Face image with a circle

Out2 Intensity of the smile

Out3 x coordinate of center of the circle
Out4 y coordinate of center of the circle
Out5 Radius of the circle

The MATLAB Function block accepts four emoji images from Image from File blocks. The smile
intensity of the emoji in these images ranges from low to high. From the four images, the block
identifies the most appropriate emoji for the estimated intensity and places it on the face image. The
output is then provided to the Video Viewer blocks.

. mage Video
t
o IM202 e

. Video Viewer
n

lena.jpg Imag

Image From Workspace

subsystem_shwrap_detectAndDraw

Video
e idimag
mtensity 0 im: Imags oo

| addEmaji
EmojiNaSmile jpg \magel i

' Video Viewer1
ipng \magel

MATLAB Function

Step 1: Import OpenCV Function to Create a Simulink Library
1 To start the OpenCV Importer app, click Apps on the MATLAB Toolstrip. In the Welcome page,

specify the Project name as Smile Detector. Make sure that the project name does not
contain any spaces. Click Next.

3-20

Smile Detection by Using OpenCV Code in Simulink

Welcome

OpenCV Code Import Wizard helps you create Simulink Blocks from your C++ OpenCV functions.
The OpenCV Import Wizard tool:

+ Asks a few questions about your OpenCV C++ functions.

« Validates your library against missing functions or variables.

= Creates Simulink blocks at the end.
You may save your settings into a file and start over later. Do you want to start a new import?

Project name: | Smile_Detector

@ Start a new import

) Load a file saved from a previous import

Next

2 In Specify OpenCV Library, specify these file locations and click Next.

* Project root folder: Specify the path to the example folder as matlab\toolbox\simulink
\supportpackages\simulinkopencv\example\SmileDetector. This folder contains all
the supporting files required to run this example. All your output files are saved to this folder.

* Source files: Specify the path of the . cpp file located inside your project folder as
smiledetect.cpp.

* Include files: Specify the path of the . hpp header file located inside your project folder as
smiledetect.hpp.

3-21

3 Using the Installer for Computer Vision System Toolbox Product

MATLAB R2020a -] *

Welcome > Specify OpenCV Library

What to consider

Specify your OpenCV library information. Specify your OpenCV library information. Use ' to
separate multiple files or directories. "Project root folder”
is the working directory that holds all generated files and

- . \simuli \ \Smi Browse) : :)
Project root folder: [rtpackages\simulinkopencviexample SmlleDetectoM | imported library model. Recommend using relative
- B— paths to "Project root folder” to specify C code files and
Source files: |_\smiledetect.cpp || JDEE | directories. At least a source file or an include file must
—_ be specified. If ne include file is specified, an
Include files: | .\smiledetect.hpp || Browse | aggregated interface header file will be auto-generated
after analyzing the source files.
Include paths: | || Browse |
Library paths: | || Browse |
Back Save Next

3-22

3 Analyze your library to find the functions and types for import. Once the analysis is completed,
click Next. Select the detectAndDraw function and click Next.

Smile Detection by Using OpenCV Code in Simulink

MATLAB R2020a -] *

Welcome > Specify OpenCV Library

What to consider

Select functions you want to import. Select all functions or a subset of functions to be
imported into Simulink library. Some functions may not
be imporied due to limitations.

- Name
v void detectAndDraw{cv::Mat & img, cv.:Mat & out, double * intensity, int * x, int * vy,
int * rd)
Back Save Next

4 From What to import, select the I/0 Type for img as Input, and then click Next.

3-23

3 Using the Installer for Computer Vision System Toolbox Product

Welcome > Specify OpenCV Library > What to import o & Simulink Library

What to consider
|

Select types you want to import. Select all types or a subset of types to be imported into |
Simulink library. Some types must be imported if they

are used by imported functions.
Function Name Argument Name Type Name /0 Type e

- detectAndDraw

img cv:Mat Input

out cv::Mat Output
intensity double Qutput
X int Output
y int Output
rd int Output

|
Back Save MNext

" 5 In Create Simulink Library, verify the default valueé and click Next.

A Simulink library Smile Detector OpenCVCallerLib is created from your OpenCV code into
the project root folder. The library contains a subsystem and a C Caller block. You can use any of
these blocks for model simulation. In this example, the subsystem
subsystem slwrap detectAndDraw is used.

3-24

Smile Detection by Using OpenCV Code in Simulink

PL Library: Smile_Detector OpenCVCallerLib * - — O >
LIBRARY DEBUG MODELING FORMAT APPS

Smile_Detector_ OpenCVCallerLib

® @ Smile_Detector_OpenCVCallerLib A
IE' outi } out }

out? > intensity }

(&S] } n1 out? } } img slwrap_detectAndDraw X }

D autd vl

out [d
subsystem_slwrap_detectAndDraw shwrap_detectAndDraw

=
Ready 100%

Step 2: Use Generated Subsystem in Simulink Model

To use the generated subsystem subsystem slwrap detectAndDraw with the Simulink model
smileDetect.slx:

1

In your MATLAB Current Folder, right-click the model smileDetect.slx and click Open from
the context menu. In the model, delete the existing subsystem slwrap_ detectAndDraw
subsystem and drag the generated subsystem subsystem slwrap detectAndDraw from the
Smile Detector OpenCVCallerLib library to the model. Connect the subsystem to the
MATLAB Function block.

Double-click the subsystem and specify these parameter values.

Parameters Values Description

Rows 512 Number of rows in the output
image

Columns 512 Number of columns in the
output image

Channels 3 Number of channels in the
output image

Underlying Type uint8 Underlying data type of
OpenCV Mat

3-25

3 Using the Installer for Computer Vision System Toolbox Product

Parameters Values Description
is Image on Whether input is an image or
a matrix

Click Apply, and then click OK.

Step 3: Simulate the Smile Detector

®
On the Simulink Toolstrip, in the Simulation tab, click to simulate the model. After the
simulation is complete, the Video Viewer block displays an image with an emoji on the face. The emoji

represents the intensity of the smile.

4\ Video Viewerl

File Tools View Simulation Help

B 0O®|aa | o .
@P@®| @

3

RGB:512x512 | T=10.000

Step 4: Generate C++ Code from the Smile Detector Model

Before you generate the code from the model, you must first ensure that you have write permission in
your current folder.

To generate C++ code:

1 Openthe smileDetect codegen.slx model from your MATLAB Current Folder.

To review the model settings:

3-26

Smile Detection by Using OpenCV Code in Simulink

On the Apps tab of the Simulink toolstrip, select Embedded Coder. The C++ Code tab appears.

In the Settings drop-down list, click C/C++ Code generation settings to open the
Configuration Parameters and verify these settings.

* Inthe Code Generation pane, under Target selection, Language is set to C++.

* In the Interface under Code Generation, Array layout in the Data exchange interface
category is set to Row-major.

Connect the generated subsystem subsystem slwrap detectAndDraw to the MATLAB

Function block.

To generate C++ code, under the C++ Code tab, click the Generate Code drop-down list and

then click Build. After the model finishes generating code, the Code Generation Report opens.

You can inspect the generated code. The build process creates a zip file called

smileDetect with ToOpenCV.zip in your current MATLAB working folder.

Deploy the Smile Detector on the Raspberry Pi Hardware

Before you deploy the model, connect the Raspberry Pi to your computer. Wait until the PWR LED on
the hardware starts blinking.

In the Settings drop-down list, click Hardware Implementation to open the Configuration
Parameters and verify these settings:

Set the Hardware board to Raspberry Pi. The Device Vendor is automatically set to ARM
Compatible.

In the Code Generation pane, under Target selection, Language is set to C++. Under Build
process, Zip file name is set to smileDetect with ToOpenCV.zip. Under Toolchain
settings, the Toolchain is specified as GNU GCC Raspberry Pi.

To deploy the code to your Raspberry Pi hardware:

1

From the generated zip file, copy these files to your Raspberry Pi hardware.

* smiledetect.zip
« smileDetect.mk

* main.cpp
In Raspberry Pi, go to the location where you saved the files and enter this command. This
command generates an elf file.

make -f smileDetect.mk
Run the executable on Raspberry Pi. On successful execution, you see the output on Raspberry Pi
with an emoji placed on the face image.

smileDetect.elf

See Also
FromOpenCV | ToOpenCV

More About

“Convert RGB Image to Grayscale Image by Using OpenCV Importer” on page 3-29

3-27

3 Using the Installer for Computer Vision System Toolbox Product

. “Draw Different Shapes by Using OpenCV Code in Simulink” on page 3-36

3-28

Convert RGB Image to Grayscale Image by Using OpenCV Importer

Convert RGB Image to Grayscale Image by Using OpenCV
Importer

In this section...

“Required Products” on page 3-29

“Set Up Your C++ Compiler” on page 3-29

“Model Description” on page 3-29

“Step 1: Import OpenCV Function to Create a Simulink Library” on page 3-30
“Step 2: Use Generated Subsystem in Simulink Model” on page 3-33

“Step 3: Simulate the RGB to Gray Convertor” on page 3-34

This example shows how to convert an RGB image to a grayscale image by using the OpenCV
Importer. The converter converts an RGB image to a grayscale image by eliminating the hue and
saturation information while retaining the luminance.

In this example, you first import an OpenCV function into Simulink by using the OpenCV Code Import
Wizard on page 3-10. The wizard creates a Simulink library that contains a subsystem and a C Caller
block for the specified OpenCV function. The subsystem is then used in a preconfigured Simulink
model to accept the RGB image for conversion.

In this example, you learn how to:

* Import an OpenCV function into a Simulink library.
* Use blocks from a generated library in a Simulink model.

Required Products

* Computer Vision Toolbox OpenCV Interface for Simulink
* Computer Vision Toolbox
* Embedded Coder

Set Up Your C++ Compiler
To build the OpenCV libraries, identify a compatible C++ compiler for your operating system, as

described in Compiler used to build OpenCV libraries. Configure the identified compiler by using the
mex -setup c++ command. For more information, see Choose a C++ Compiler.

Model Description
This example uses the Simulink model ToGrayScale.s1x.

In this model, the subsystem slwrap toGrayScale subsystem resides in the

RGBtoGRAY OpenCVCallerLib library. You create the subsystem slwrap toGrayScale
subsystem by using the OpenCV Importer. The subsystem accepts an RGB image from the Image
From File block and converts it to a grayscale output image. The output is then displayed on a Video
Viewer block.

3-29

3 Using the Installer for Computer Vision System Toolbox Product

3-30

- - Video
peppers.png Image P ini outl P Image Viewer
Image From File Videno Viewer

subsystem_slwrap_toGrayScale

Step 1: Import OpenCV Function to Create a Simulink Library

1

To start the OpenCV Importer app, click Apps on the MATLAB Toolstrip. In the Welcome page,
specify the Project name as RGBtoGRAY. Make sure that the project name does not contain any
spaces. Click Next.

In Specify OpenCV Library, specify these file locations and click Next.

* Project root folder: Specify the path to the example folder as matlab\toolbox\simulink
\supportpackages\simulinkopencv\example\ImageRGBtoGray. This folder contains
all the supporting files required to run this example. All your output files are saved to this
folder.

* Source files: Specify the path of the . cpp file located inside your project folder as
toGrayScale.cpp.

* Include files: Specify the path of the . hpp header file located inside your project folder as
toGrayScale. hpp.

Convert RGB Image to Grayscale Image by Using OpenCV Importer

MATLAB R2020a -] *

Welcome > Specify OpenCV Library

What to consider

Specify your OpenCV library information. Specify your OpenCV library information. Use ' to
separate multiple files or directories. "Project root folder”
is the working directory that holds all generated files and

- . \simuli \ \ Browse

Project root folder: [ickages\simulinkopencviexample .ImageRGBtoGram | e e S
—B paths to "Project root folder” to specify C code files and

Source files: | \toGrayScale.cpp || Browse | directories. At least 1 source file and 1 include file must
S be specified.

Include files: | ‘MoGrayScale hpp || Browse |

Include paths: | || Browse |

Library paths: | || Browse |

Back Save Next

3 Analyze your library to find the functions and types for import. Once the analysis is completed,
click Next. Select the toGrayScale function and click Next.

3-31

3 Using the Installer for Computer Vision System Toolbox Product

MATLAB R2020a -] *

Welcome > Specify OpenCV Library

What to consider

Select functions you want to import. Select all functions or a subset of functions to be
imported into Simulink library. Some functions may not

= e be imported due to limitations.

¢ void toGrayScale(cv:Mat & img)

Back Save Next

3-32

4 From What to import, click the I/O Type for img as InputOutput, and then click Next.

Convert RGB Image to Grayscale Image by Using OpenCV Importer

MATLAB R2020a -] *

Welcome > Specify OpenCV Library > What to import > Create Simulink Library

What to consider

Select types you want to import. Select all types or a subset of types to be imported into
Simulink library. Some types must be imported if they

are used by imported functions.

Function Name Argument Name Type Name /0 Type
~ toGrayScale
img cv:Mat
Output
Input
| Inputoutput
Back Save MNext

5 In Create Simulink Library, verify the default values of OpenCV types. By default, Create a
single C-caller block for the OpenCV function is selected to create a C Caller block along
with the subsystem. To create a Simulink library, click Next.

A Simulink library RGBtoGRAY OpenCVCallerLib is created from your OpenCV code. You can
use any of the blocks in the library for model simulation. In this example, the subsystem
subsystem slwrap toGrayScale is used.

Step 2: Use Generated Subsystem in Simulink Model

To use the generated subsystem subsystem slwrap toGrayScale with the Simulink model
toGrayScale.slx:

1 Inyour MATLAB Current Folder, right-click the model toGrayScale.slx and click Open from
the context menu. Drag the generated subsystem to the model and connect the blocks.
2 Double-click the subsystem and specify these parameter values.

Parameters Values Description

Rows 384 Number of rows in the output
image

Columns 512 Number of columns in the

output image

Channels 1 Number of channels in the
output image

3-33

3 Using the Installer for Computer Vision System Toolbox Product

3-34

Parameters Values Description

Underlying Type uint8 Underlying data type of
OpenCV Mat

is Image on Whether input is an image or
a matrix

Click Apply and then click OK.

Step 3: Simulate the RGB to Gray Convertor

On the Simulink Toolstrip, in the Simulation tab, click

to simulate the model. After the

simulation is complete, the Video Viewer block displays the grayscale image of the input image
peppers.png.

Convert RGB Image to Grayscale Image by Using OpenCV Importer

@ Video Viewer - O x
File Tools View Simulation Help N
RO A Q| O oo y

ONN =

Ready [:384x512 T=10.000

See Also
FromOpenCV | ToOpenCV

More About
. “Smile Detection by Using OpenCV Code in Simulink” on page 3-19
. “Draw Different Shapes by Using OpenCV Code in Simulink” on page 3-36

3-35

3 Using the Installer for Computer Vision System Toolbox Product

Draw Different Shapes by Using OpenCV Code in Simulink

3-36

This example shows how to draw different shapes on images.

In this example, you first import an OpenCV function into Simulink by using the OpenCV Code Import
Wizard on page 3-10. The wizard creates a Simulink library that contains a subsystem and a C Caller
block for the specified OpenCV function. The subsystem is then used in a preconfigured Simulink
model. This subsystem accepts coordinates of a specified shape and results in a defined shape that is
displayed on a Video Viewer.

In this example, you learn how to:

* Import an OpenCV function into a Simulink library.
* Use blocks from a generated library in a Simulink model.

Required Products

* Computer Vision Toolbox OpenCV Interface for Simulink
* Computer Vision Toolbox
* Embedded Coder

Set Up Your C++ Compiler

To build the OpenCV libraries, identify a compatible C++ compiler for your operating system, as
described in Compiler used to build OpenCV libraries. Configure the identified compiler by using the
mex -setup c++ command. For more information, see Choose a C++ Compiler.

Model Description

These Simulink models are available in the DrawShapes folder:

* DrawAtom.slx

* DrawEllipse.slx

* DrawFilledCircle.slx
* DrawLine.slx

* DrawPolygon.slx

* DrawRook.slx

This example uses the DrawFilledCircle.s1x model. In this model, the

subsystem slwrap drawFilledCircle subsystem resides in the

DrawCircle OpenCVCallerLib library. You create the subsystem slwrap drawFilledCircle
subsystem by using the OpenCV Importer. The subsystem accepts the x and y coordinates for the
center of the circle and radius as input to the subsystem. It creates a circle on an input image from
the Image From File block. The output is then displayed on a Video Viewer block.

Draw Different Shapes by Using OpenCV Code in Simulink

peppers.png Image

Image From File Inputimage

170 - inl
int32 ! ! in2
x1, ¥1) [
int3z Gt) outi P Image \-fndecr
200 in3 Viewer
20 P ind -
Video Viewer
[255 255 255]
RJB scalar

Constant

Step 1: Import OpenCV Function to Create a Simulink Library

1

To start the OpenCV Importer app, click Apps on the MATLAB Toolstrip. The OpenCV import
wizard opens to a Welcome page. Specify the Project name as DrawCircle. Make sure that the
project name does not contain any spaces. Click Next.

In Specify OpenCV Library, specify these file locations and click Next.

* Project root folder: Specify the path to the example folder as matlab\toolbox\simulink
\supportpackages\simulinkopencv\example\DrawShapes. This folder contains all the
supporting files required to run this example. All your output files are saved to this folder.

* Source files: Specify the path of the . cpp file located inside your project folder as
opencvcode. cpp.

* Include files: Specify the path of the . hpp header file located inside your project folder as
opencvcode. hpp.

Analyze your library to find the functions and types for import. Once the analysis is completed,

click Next. From the listed functions, select the drawFilledCircle function and click Next.

From What to import, select the I/O Type for img as InputOutput and other arguments as

Input. Click Next.

In Create Simulink Library, verify the default values of OpenCV types. By default, Create a

single C-caller block for the OpenCV function is selected to create a C Caller block along

with the subsystem. To create a Simulink library, click Next.

A Simulink library DrawCircle OpenCVCallerLib is created from your OpenCV code. You can
use any of these blocks for model simulation. In this example, the subsystem
subsystem slwrap drawFilledCircle is used.

3-37

3 Using the Installer for Computer Vision System Toolbox Product

Step 2: Use Generated Subsystem in Simulink Model

To use the generated subsystem subsystem slwrap drawFilledCircle with the Simulink model
DrawFilledCircle.slx:

1 Inyour MATLAB Current Folder, right-click the model DrawFilledCircle.s1x and click
Open from the context menu. Drag the generated subsystem to the model and connect the
blocks.

2 Double-click the subsystem and verify the parameter values.

P

&
On the Simulink Toolstrip, in the Simulation tab, click to simulate the model. After the
simulation is complete, the Video Viewer block displays the filled circle on the input image

peppers.png.

4 Video Viewer - O s

File Teols View Simulaticn Help k]
0 08| aa | >
ORI A=

Ready RGB:334x512 | T=10.000

Draw Atom on Image by Using C Caller Block

This example shows how to use a C Caller block in a Simulink model to draw an atom on an image.

1 ImportdrawEllipse and drawFilledCircle OpenCV functions into Simulink by using the
OpenCV Code Import Wizard on page 3-10. During import, select the I/O Type for drawE1llipse
and drawFilledCircle as shown in this graphic.

3-38

Draw Different Shapes by Using OpenCV Code in Simulink

Select types you want to import.

Function Name

» drawEllipse

= drawFilledCircle

Argument Name

img
angle
center
axessize

color

imag
center
color
radius

Type Name

cv::Mat
double
cv::Point2;
cv. Size

cv..Scalar

cv::Mat
cv::Point2;
cv:Scalar
int

/0 Type

InputOutput
Input
Input
Input
Input

InputOutput
Input
Input
Input

2 Once you import the functions, the DrawCircle OpenCVCallerLib library is created. This
Simulink library contains subsystems and the C Caller blocks required to draw atom on an image.

Open the model DrawAtomCcaller.slx. Drag the slwrap drawEllipse C Caller block from
the Simulink library DrawCircle OpenCVCallerLib. Create three copies of the C Caller block
and then place these blocks at the four blank positions inside the drawEllipses subsystem.

In the model, drag the slwrap drawEllipse C Caller block from the Simulink library

DrawCircle OpenCVCallerLib and place the block at the blank position.

255'0nes(WW,3) |——m

ToOpenCy

Emply white image

On the Simulink Toolstrip, in the Simulation tab, click
simulation is complete, the Video Viewer block displays the atom on a white input image.

shwrap_drawFilledCircle

drawEllipses

55 255] H ToOpenCV ’7

Yellow

-

FromOpenCV

Widao

Ima9E icwer

Video Viewer

Add shwrap_drawFilledCircle CCaller block at the blank pesition above.

&

®

to simulate the model. After the

3-39

3 Using the Installer for Computer Vision System Toolbox Product

4\ Video Viewer — | *

File Tools View Simulation Help u

W[OH|Qa @ Lo y

®k®| =

| |_L|J

Ready RGB:500x500 | T=10.000
See Also

FromOpenCV | ToOpenCV

More About
. “Smile Detection by Using OpenCV Code in Simulink” on page 3-19
. “Convert RGB Image to Grayscale Image by Using OpenCV Importer” on page 3-29

3-40

Input, Output, and Conversions

Learn how to import and export videos, and perform color space and video image conversions.

» “Export to Video Files” on page 4-2

* “Import from Video Files” on page 4-4

* “Batch Process Image Files” on page 4-6

* “Convert R'G'B' to Intensity Images” on page 4-7

* “Process Multidimensional Color Video Signals” on page 4-10
* “Video Formats” on page 4-12

* “Image Formats” on page 4-13

4

Input, Output, and Conversions

Export to Video Files

4-2

The Computer Vision Toolbox bl

ocks enable you to export video data from your Simulink model. In

this example, you use the To Multimedia File block to export a multimedia file from your model. This
example also uses Gain blocks from the Math Operations Simulink library.

You can open the example model by typing at the MATLAB command line.

ex_export to mmf

1 Run your model.

2 You can view your video in the To Video Display window.

(Ev.o o e

View Settings Help

® !I-
=
N

-

By increasing the red, green, and blue color values, you increase the contrast of the video. The To
Multimedia File block exports the video data from the Simulink model to a multimedia file that it

creates in your current folder.

This example manipulated the video stream and exported it from a Simulink model to a multimedia
file. For more information, see the To Multimedia File block reference page.

Setting Block Parameters for this Example

The block parameters in this example were modified from default values as follows:

Block

Parameter

Gain

The Gain blocks are used to increase the red, green, and blue values
of the video stream. This increases the contrast of the video:
* Main pane, Gain = 1.2

* Signal Attributes pane, Output data type = Inherit: Same
as input

To Multimedia File

The To Multimedia File block exports the video to a multimedia file:

* File name = my output.avi
* Write = Video only
* Image signal = Separate color signals

matlab:ex_export_to_mmf

Export to Video Files

Configuration Parameters

Open the Configuration Parameters dialog box from the Modeling tab by selecting Model Settings
> Model Settings. Set the Solver parameters as follows:

* Stop time = 20
* Type = Fixed-step
* Solver =Discrete (no continuous states)

4-3

4 Input, Output, and Conversions

Import from Video Files

In this example, you use the From Multimedia File source block to import a video stream into a
Simulink model and the To Video Display sink block to view it. This procedure assumes you are
working on a Windows platform.

You can open the example model by typing at the MATLABcommand line.
ex_import mmf

Run your model.

2 View your video in the To Video Display window that automatically appears when you start your
simulation.

(BTovi. o o e |

Wiew Settings Help

You have now imported and displayed a multimedia file in the Simulink model. In the “Export to Video
Files” on page 4-2 example you can manipulate your video stream and export it to a multimedia file.

For more information on the blocks used in this example, see the From Multimedia File and To Video
Display block reference pages.

Setting Block Parameters for this Example

The block parameters in this example were modified from default values as follows:

Block Parameter
From Multimedia File Use the From Multimedia File block to import the multimedia file into
the model:

* Ifyou do not have your own multimedia file, use the default
vipmen.avi file, for the File name parameter.

+ If the multimedia file is on your MATLAB path, enter the filename for
the File name parameter.

» If the file is not on your MATLAB path, use the Browse button to
locate the multimedia file.

* Set the Image signal parameter to Separate color signals.

By default, the Number of times to play file parameter is set to inf.
The model continues to play the file until the simulation stops.

4-4

matlab:ex_import_mmf

Import from Video Files

Block Parameter
To Video Display Use the To Video Display block to view the multimedia file.

* Image signal: Separate color signals

Set this parameter from the Settings menu of the display viewer.

Configuration Parameters

Open the Configuration Parameters dialog box from the Modeling tab by selecting Model Settings
> Model Settings. Set the Solver parameters as follows:

* Stop time = 20
+ Type = Fixed-step
* Solver =Discrete (no continuous states)

4

Input, Output, and Conversions

Batch Process Image Files

4-6

A common image processing task is to apply an image processing algorithm to a series of files. In this
example, you import a sequence of images from a folder into the MATLAB workspace.

Note In this example, the image files are a set of 10 microscope images of rat prostate cancer cells.
These files are only the first 10 of 100 images acquired.

Specify the folder containing the images, and use this information to create a list of the file
names, as follows:

fileFolder = fullfile(matlabroot, 'toolbox', 'images', 'imdata');
dirQutput dir(fullfile(fileFolder, 'AT3 1m4 *.tif'));
fileNames {dirQutput.name}'

View one of the images, using the following command sequence:

I = imread(fileNames{1});
imshow(I);
text(size(I,2),size(I,1)+15,
'Image files courtesy of Alan Partin',
'FontSize',7, 'HorizontalAlignment', 'right');
text(size(I,2),size(I,1)+25,
'Johns Hopkins University',
'FontSize',7, 'HorizontalAlignment', 'right');

Use a for loop to create a variable that stores the entire image sequence. You can use this
variable to import the sequence into Simulink.

for i = 1l:length(fileNames)
my video(:,:,1i) = imread(fileNames{i});
end

For additional information about batch processing, see the “Image Sequences and Batch Processing”
(Image Processing Toolbox) section for the Image Processing Toolbox™.

Configuration Parameters

Open the Configuration Parameters dialog box from the Modeling tab by selecting Model Settings
> Model Settings. Set the Solver parameters as follows:

Stop time = 10
Type = Fixed-step
Solver = Discrete (no continuous states)

Convert R'G'B' to Intensity Images

Convert R'G'B' to Intensity Images

The Color Space Conversion block enables you to convert color information from the R'G'B' color
space to the Y'CbCr color space and from the Y'CbCr color space to the R'G'B' color space as
specified by Recommendation ITU-R BT.601-5. This block can also be used to convert from the R'G'B'
color space to intensity. The prime notation indicates that the signals are gamma corrected.

Some image processing algorithms are customized for intensity images. If you want to use one of
these algorithms, you must first convert your image to intensity. In this topic, you learn how to use
the Color Space Conversion block to accomplish this task. You can use this procedure to convert any
R'G'B' image to an intensity image:

ex_vision convert rgb

1 Define an R'G'B' image in the MATLAB workspace. To read in an R'G'B' image from a JPG file, at
the MATLAB command prompt, type

I= imread('greens.jpg');

I is a 300-by-500-by-3 array of 8-bit unsigned integer values. Each plane of this array represents
the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command prompt, type

imshow(I)

4 Figura 1 = “w

File Edit View Insert Tools Desktop Window Help b

EEFRREEIDYE

3 Create a new Simulink model, and add to it the blocks shown in the following table.

matlab:ex_vision_convert_rgb

4 Input, Output, and Conversions

Block Library Number of
Blocks

Image From Workspace Computer Vision Toolbox > Sources 1

Color Space Conversion Computer Vision Toolbox > Conversions |1

Video Viewer Computer Vision Toolbox > Sinks 2

4 Use the Image from Workspace block to import your image from the MATLAB workspace. Set
theValue parameter to I.

5 Use the Color Space Conversion block to convert the input values from the R'G'B' color space to
intensity. Set the Conversion parameter to R'G'B' to intensity.

6 View the modified image using the Video Viewer block. View the original image using the Video
Viewerl block. Accept the default parameters.

7 Connect the blocks so that your model is similar to the following figure.

R'G'B' to Video
intensity Image Viewer

h 4
¥

Image

Video Viewer1

Video

Image]
9 Viewer

Video Viewer

8 Set the configuration parameters. Open the Configuration dialog box by selecting Model
Settings from the Setup menu on the Modeling tab. Set the parameters as follows:
* Solver pane, Stop time = 0
* Solver pane, Type = Fixed-step
* Solver pane, Solver = Discrete (no continuous states)
9 Run your model.

The image displayed in the Video Viewer window is the intensity version of the greens. jpg
image.

4-8

Convert R'G'B' to Intensity Images

4 Video ViewerT = | s
File Tools View Simulation Help e
B I+ v |
X IEY " "

Ready 1:300x500 T=0.000

4-9

4 Input, Output, and Conversions

Process Multidimensional Color Video Signals

The Computer Vision Toolbox software enables you to work with color images and video signals as
multidimensional arrays. For example, the following model passes a color image from a source block
to a sink block using a 384-by-512-by-3 array.

ex_vision process multidimensional

n I - " Video
pepperspng Image plimage -
imege From e Videc Viewer

You can choose to process the image as a multidimensional array by setting the Image signal
parameter to One multidimensional signal in the Image From File block dialog box.

The blocks that support multidimensional arrays meet at least one of the following criteria:

* They have the Image signal parameter on their block mask.

* They have a note in their block reference pages that says, “This block supports intensity and color
images on its ports.”

* Their input and output ports are labeled “Image”.

4-10

matlab:ex_vision_process_multidimensional

Process Multidimensional Color Video Signals

You can also choose to work with the individual color planes of images or video signals. For example,
the following model passes a color image from a source block to a sink block using three separate
color planes.

ex_vision process individual

>
Video
PEpRErs.ENg G > Viewer
>
Image From File Video Viewer

To process the individual color planes of an image or video signal, set the Image signal parameter to
Separate color signals in both the Image From File and Video Viewer block dialog boxes.

Note The ability to output separate color signals is a legacy option. It is recommend that you use
multidimensional signals to represent color data.

If you are working with a block that only outputs multidimensional arrays, you can use the Selector
block to separate the color planes. If you are working with a block that only accepts multidimensional
arrays, you can use the Matrix Concatenation block to create a multidimensional array.

4-11

matlab:ex_vision_process_individual

4 Input, Output, and Conversions

Video Formats

4-12

Defining Intensity and Color

Video data is a series of images over time. Video in binary or intensity format is a series of single
images. Video in RGB format is a series of matrices grouped into sets of three, where each matrix
represents an R, G, or B plane.

The values in a binary, intensity, or RGB image can be different data types. The data type of the image
values determines which values correspond to black and white as well as the absence or saturation of
color. The following table summarizes the interpretation of the upper and lower bound of each data
type. To view the data types of the signals at each port, from the Display menu, point to Signals &
Ports, and select Port Data Types.

Data Type Black or Absence of Color White or Saturation of Color
Fixed point Minimum data type value Maximum data type value
Floating point 0 1

Note The Computer Vision Toolbox software considers any data type other than double-precision
floating point and single-precision floating point to be fixed point.

For example, for an intensity image whose image values are 8-bit unsigned integers, 0 is black and
255 is white. For an intensity image whose image values are double-precision floating point, 0 is
black and 1 is white. For an intensity image whose image values are 16-bit signed integers, -32768 is
black and 32767 is white.

For an RGB image whose image values are 8-bit unsigned integers, 0 0 0 is black, 255 255 255 is
white, 255 0 0 is red, 0 255 0 is green, and 0 0 255 is blue. For an RGB image whose image values are
double-precision floating point, 0 0 0 is black, 1 1 1 is white, 1 0 O isred, 0 1 0 is green, and 0 0 1 is
blue. For an RGB image whose image values are 16-bit signed integers, -32768 -32768 -32768 is
black, 32767 32767 32767 is white, 32767 -32768 -32768 is red, -32768 32767 -32768 is green, and
-32768 -32768 32767 is blue.

Video Data Stored in Column-Major Format

The MATLAB technical computing software and Computer Vision Toolbox blocks use column-major
data organization. The blocks' data buffers store data elements from the first column first, then data
elements from the second column second, and so on through the last column.

If you have imported an image or a video stream into the MATLAB workspace using a function from
the MATLAB environment or the Image Processing Toolbox, the Computer Vision Toolbox blocks will
display this image or video stream correctly. If you have written your own function or code to import
images into the MATLAB environment, you must take the column-major convention into account.

Image Formats

Image Formats

In the Computer Vision Toolbox software, images are real-valued ordered sets of color or intensity
data. The blocks interpret input matrices as images, where each element of the matrix corresponds to
a single pixel in the displayed image. Images can be binary, intensity (grayscale), or RGB. This section
explains how to represent these types of images.

Binary Images

Binary images are represented by a Boolean matrix of Os and 1s, which correspond to black and
white pixels, respectively.

For more information, see “Binary Images” (Image Processing Toolbox).

Intensity Images

Intensity images are represented by a matrix of intensity values. While intensity images are not
stored with colormaps, you can use a gray colormap to display them.

For more information, see “Grayscale Images” (Image Processing Toolbox).

RGB Images

RGB images are also known as a true-color images. With Computer Vision Toolbox blocks, these
images are represented by an array, where the first plane represents the red pixel intensities, the
second plane represents the green pixel intensities, and the third plane represents the blue pixel
intensities. In the Computer Vision Toolbox software, you can pass RGB images between blocks as
three separate color planes or as one multidimensional array.

For more information, see “Truecolor Images” (Image Processing Toolbox).

4-13

Display and Graphics

+ “Display, Stream, and Preview Videos” on page 5-2
* “Draw Shapes and Lines” on page 5-4

5 Display and Graphics

Display, Stream, and Preview Videos

5-2

In this section...

“View Streaming Video in MATLAB” on page 5-2
“Preview Video in MATLAB” on page 5-2

“View Video in Simulink” on page 5-2

View Streaming Video in MATLAB

Basic Video Streaming

Use the video player vision.VideoPlayer System object when you require a simple video display
in MATLAB for streaming video.

Code Generation Supported Video Streaming Object

Use the deployable video player vision.DeployableVideoPlayer System object as a basic display
viewer designed for optimal performance. This object supports code generation on all platforms.

Preview Video in MATLAB

Use the Image Processing Toolbox implay function to view and represent videos as variables in the
MATLAB workspace. It is a full featured video player with toolbar controls. The implay player
enables you to view videos directly from files without having to load all the video data into memory at
once.

You can open several instances of the implay function simultaneously to view multiple video data
sources at once. You can also dock these implay players in the MATLAB desktop. Use the figure
arrangement buttons in the upper-right corner of the Sinks window to control the placement of the
docked players.

View Video in Simulink

Code Generation Supported Video Streaming Block

Use the To Video Display block in your Simulink model as a simple display viewer designed for
optimal performance. This block supports code generation for the Windows platform.

Simulation Control and Video Analysis Block

Use the Video Viewer block when you require a wired-in video display with simulation controls in
your Simulink model. The Video Viewer block provides simulation control buttons directly from the
player interface. The block integrates play, pause, and step features while running the model and also
provides video analysis tools such as pixel region viewer.

View Video Signals Without Adding Blocks

The implay function enables you to view video signals in Simulink models without adding blocks to
your model. You can open several instances of the implay player simultaneously to view multiple
video data sources at once. You can also dock these players in the MATLAB desktop. Use the figure

Display, Stream, and Preview Videos

arrangement buttons in the upper-right corner of the Sinks window to control the placement of the
docked players.

Set Simulink simulation mode to Normal to use implay. implay does not work when you use
“Accelerating Simulink Models” on page 13-3.

Example 5.1. Use implay to view a Simulink signal:

Open a Simulink model.

Open an implay player by typing implay on the MATLAB command line.
Run the Simulink model.

Select the signal line you want to view.

On the implay toolbar, select File > Connect to Simulink Signal .

g A W N R

The video appears in the player window.
6 You can use multiple implay players to display different Simulink signals.

Note During code generation, the Simulink Coder™ does not generate code for the implay player.

5-3

5 Display and Graphics

Draw Shapes and Lines

When you specify the type of shape to draw, you must also specify it’s location on the image. The
table shows the format for the points input for the different shapes.

Rectangle

Shape

PTS input

Drawn Shape

Single Rectangle

Four-element row vector
[Xx y width height] where

* X and y are the one-based coordinates of the
upper-left corner of the rectangle.

* width and height are the width, in pixels,
and height, in pixels, of the rectangle. The
values of width and height must be greater
than 0.

(x,y)

(x + width-1, y + height-1)

M Rectangles

M-by-4 matrix
X1 N Widthl heightl
X2 W widthy height2
Xy Ym widthyy heighty

where each row of the matrix corresponds to a
different rectangle and is of the same form as the
vector for a single rectangle.

M=2
(x,y1)

(x4 + widthi-1, y1 + heighti-1)
(x,y)

/

(x2 + widthz-1, y2 + heightz-1)

Line and Polyline

You can draw one or more lines, and one or more polylines. A polyline contains a series of connected

line segments.

Shape

PTS input

Drawn Shape

Single Line

Four-element row vector [X; y; X, Y,] where
* X; and y; are the coordinates of the beginning
of the line.

* X, and Yy, are the coordinates of the end of the
line.

(x1. 1)

\xz. y2)

Draw Shapes and Lines

Shape PTS input Drawn Shape

M Lines M-by-4 matrix (11, y11)

X11 Y11 X12 Y12 \{1 yi2)

X21 Y21 X22 V22 (X1, ymr)

XM1 YM1 XM2 VM2 /

where each row of the matrix corresponds to a (xuz, yiie)
different line and is of the same form as the
vector for a single line.

Single Polyline with Vector of size 2L, where L is the number of (X, ye)

(L-1) Segments vertices, with format, [x;, Y1, X3, Y2, --.,
., yil. (xL. V

* x; and y; are the coordinates of the beginning
of the first line segment.

* X, and y, are the coordinates of the end of the (x1. y1)
first line segment and the beginning of the
second line segment.

+ x; and y; are the coordinates of the end of the | (X2 y2)
(L-1)™ line segment.

The polyline always contains (L-1) number of
segments because the first and last vertex points
do not connect. The block produces an error
message when the number of rows is less than
two or not a multiple of two.

M Polylines with (L-1) |2L-by-N matrix M=3, L=5
Segments)] bas.y1e)

X11 Y11 X12 Y12 - XIL ViL e
X21 Y21 X22 Y22 X2L V2L _—
(x12.yo2) (%12, y13)
[XM1 YM1 XM2 YM2 XML YML |
. (Xa¢, y24) = (xas, yas) *A?d?d L:SHMT_T;
where each row of the matrix corresponds to a velue, because ihs
different polyline and is of the same form as the P e o
vector for a single polyline. When you require ezt y) (a3, y=3) e
one polyline to contain less than (L-1) number of (2. yo)
segments, fill the matrix by repeating the
coordinates of the last vertex. (o, yu) e ve)
The block produces an error message if the
number of rows is less than two or not a multiple (o y) - 605
of two. o yur)

3-5

5 Display and Graphics

Polygon

You can draw one or more polygons.

Shape

PTS input

Drawn Shape

Single Polygon with L
line segments

Row vector of size 2L, where L is the number of
vertices, with format, [X; y; X2 Vo ... X_ V]
where

* x; and y; are the coordinates of the beginning
of the first line segment.

* X, and y, are the coordinates of the end of the
first line segment and the beginning of the
second line segment.

* x; and y;, are the coordinates of the end of the
(L-1)t* line segment and the beginning of the
L™ line segment.

The block connects [x; y;] to [x. y.] to
complete the polygon. The block produces an
error if the number of rows is negative or not a
multiple of two.

(XL
(X1, y1)
X3, ¥3)

(%2, yz

M Polygons with the
largest number of line
segments in any line
being L

M-by-2L matrix

X11 Y11 X12 Y12 - X1L ViL

X21 Y21 X22 Y22 = X2L VoL

XM1 YM1 XM2 YM2 - XML YML

where each row of the matrix corresponds to a
different polygon and is of the same form as the
vector for a single polygon. If some polygons are
shorter than others, repeat the ending
coordinates to fill the polygon matrix.

The block produces an error message if the
number of rows is less than two or is not a
multiple of two.

M=3, L=5 (i y14)

(L, yiL
(%11, y11)
(x13, y13)

(%12, y12)

y2¢) = (xas, yas)
Ax y22)
. y2z)

(Xma, yma)

“Added L=5 matrix
entry equal to L=4
value, because this
polyline contains one
less number of

segments.
(x21, y21)

(xz2

XHL. ynL

2, yuz) (xuz, ym3)

(xu1, ymt)

Circle

You can draw one or more circles.

Draw Shapes and Lines

Shape

PTS input

Drawn Shape

Single Circle

Three-element row vector
[Xx y radius] where

* x and y are coordinates for the center of the
circle.

e radius is the radius of the circle, which must
be greater than 0.

M Circles

M-by-3 matrix

X1 Y1 radius;
Xy Yy radiusy

XM VM radiusyy

where each row of the matrix corresponds to a
different circle and is of the same form as the
vector for a single circle.

(x1,y1)

(x2,y2)

See Also

Insert Text | insertMarker | insertObjectAnnotation | insertShape

5-7

Registration and Stereo Vision

» “Fisheye Calibration Basics” on page 6-2

» “Single Camera Calibrator App” on page 6-8

* “Stereo Camera Calibrator App” on page 6-25
* “What Is Camera Calibration?” on page 6-39
» “Structure from Motion” on page 6-45

6 Registration and Stereo Vision

Fisheye Calibration Basics

Camera calibration is the process of computing the extrinsic and intrinsic parameters of a camera.
Once you calibrate a camera, you can use the image information to recover 3-D information from 2-D
images. You can also undistort images taken with a fisheye camera.

Fisheye cameras are used in odometry and to solve the simultaneous localization and mapping
(SLAM) problems visually. Other applications include, surveillance systems, GoPro, virtual reality
(VR) to capture 360 degree field of view (fov), and stitching algorithms. These cameras use a complex
series of lenses to enlarge the camera's field of view, enabling it to capture wide panoramic or
hemispherical images. However, the lenses achieve this extremely wide angle view by distorting the
lines of perspective in the images

Fisheye image | Undistorted fisheye image

Because of the extreme distortion a fisheye lens produces, the pinhole model cannot model a fisheye
camera.
— = ==
1 P
o p:
> o
Pinhole Fisheye

6-2

Fisheye Calibration Basics

Fisheye Camera Model

The Computer Vision Toolbox calibration algorithm uses the fisheye camera model proposed by
Scaramuzza[l]. You can use this model with cameras up to a field of view (FOV) of 150 degrees. The
model uses an omnidirectional camera model. The process treats the imaging system as a compact
system. In order to relate a 3-D world point on to a 2-D image, you must obtain the camera extrinsic
and intrinsic parameters. World points are transformed to camera coordinates using the extrinsics
parameters. The camera coordinates are mapped into the image plane using the intrinsics
parameters.

Camera Pixel

coordinates coordinates
[u,v]

Extrinsic parameters Intrinsic parameters

Extrinsic Parameters

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin of the camera's
coordinate system is at its optical center and its x- and y-axis define the image plane.

> [
S

The transformation from world points to camera points is:

Xc Xw
Ye | = RlYw|+T
Zc | *Zw |

Rotation Translation
i, e,

Camen points World paints
Intrinsic Parameters

For the fisheye camera model, the intrinsic parameters include the polynomial mapping coefficients
of the projection function. The alignment coefficients are related to sensor alignment and the
transformation from the sensor plane to a pixel location in the camera image plane.

The following equation maps an image point into its corresponding 3-D vector.

6-3

6 Registration and Stereo Vision

X, i

Y |=4 v

Z, iy ""-"'z.lr::l'3 +a3p3 ""1'..1.|’:".I
* (u,v)

are the ideal image projections of the real-world points.

A represents a scalar factor.
=0

Qs as sty g polynomial coefficents described by the Scaramuzza model, where 4

P is a function of (u,v) and depends only on the distance of a point from the image center:
p =4/ w+v°

The intrinsic parameters also account for stretching and distortion. The stretch matrix compensates
for the sensor-to-lens misalignment, and the distortion vector adjusts the (0,0) location of the image

plane.

—»

Y

A

/_\ (u"v"™)

| f{}{,fﬁl'] ['E:":;] w 1

U " (cx,cy)
wo| | S)

v Y

Stratch Shift

The following equation relates the real distorted coordinates (u",v") to the ideal distorted coordinates

(u,v).
" c d\fu c,
L] = +
v e 1/)\v c,
Image pixels T T Distortion center

Stretch Hypothetical
matrix image plane

Fisheye Camera Calibration in MATLAB

To remove lens distortion from a fisheye image, you can detect a checkerboard calibration pattern
and then calibrate the camera. You can find the checkerboard points using the

6-4

Fisheye Calibration Basics

detectCheckerboardPoints and generateCheckerboardPoints functions. The
estimateFisheyeParameters function uses the detected points and returns the
fisheyeParameters object that contains the intrinsic and extrinsic parameters of a fisheye camera.
You can use the fisheyeCalibrationErrors to check the accuracy of the calibration.

Correct Fisheye Image for Lens Distortion

Remove lens distortion from a fisheye image by detecting a checkboard calibration pattern and
calibrating the camera. Then, display the results.

Gather a set of checkerboard calibration images.

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',
'calibration', 'gopro'));

Detect the calibration pattern from the images.
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);
Generate world coordinates for the corners of the checkerboard squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the fisheye camera calibration parameters based on the image and world points. Use the
first image to get the image size.

I = readimage(images,l);
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);

Remove lens distortion from the first image I and display the results.

J1 = undistortFisheyeImage(I,params.Intrinsics);

figure

imshowpair(I,J1, 'montage"')

title('Original Image (left) vs. Corrected Image (right)')

Original Image {(left) vs. Corrected Image (right)

6 Registration and Stereo Vision

J2 = undistortFisheyeImage(I,params.Intrinsics, 'OutputView', 'full');
figure

imshow(J2)

title('Full Output View')

Full Output View

References

[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omnidirectional
Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems,
(IROS). Beijing, China, October 7-15, 2006.

See Also

Functions
estimateFisheyeParameters | undistortFisheyelImage | undistortFisheyePoints

Objects
fisheyeCalibrationErrors | fisheyeIntrinsics | fisheyeIntrinsicsEstimationErrors
| fisheyeParameters

6-6

Fisheye Calibration Basics

Related Examples

. “Configure Monocular Fisheye Camera” (Automated Driving Toolbox)
. “Calibrate a Monocular Camera” (Automated Driving Toolbox)

. “Structure From Motion From Two Views”

. “Structure From Motion From Multiple Views”

. “Configure Monocular Fisheye Camera” (Automated Driving Toolbox)

6 Registration and Stereo Vision

Single Camera Calibrator App

In this section...

“Camera Calibrator Overview” on page 6-8

“Single Camera Calibration” on page 6-8

“Open the Camera Calibrator” on page 6-9

“Prepare the Pattern, Camera, and Images” on page 6-9
“Add Images and Select Camera Model” on page 6-11
“Calibrate” on page 6-15

“Evaluate Calibration Results” on page 6-17

“Improve Calibration” on page 6-20

“Export Camera Parameters” on page 6-23

Camera Calibrator Overview

You can use the Camera Calibrator app to estimate camera intrinsics, extrinsics, and lens distortion
parameters. You can use these camera parameters for various computer vision applications. These
applications include removing the effects of lens distortion from an image, measuring planar objects,
or reconstructing 3-D scenes from multiple cameras.

The suite of calibration functions used by the Camera Calibrator app provide the workflow for
camera calibration. You can use these functions directly in the MATLAB workspace. For a list of
functions, see “Single and Stereo Camera Calibration”.

Single Camera Calibration

prepare images calibrate improve

Follow this workflow to calibrate your camera using the app:

Prepare images, camera, and calibration pattern.

Add images and select standard or fisheye camera model.
Calibrate the camera.

Evaluate calibration accuracy.

Adjust parameters to improve accuracy (if necessary).

N U A W N K=

Export the parameters object.

In some cases, the default values work well, and you do not need to make any improvements before
exporting parameters. You can also make improvements using the camera calibration functions
directly in the MATLAB workspace. For a list of functions, see “Single and Stereo Camera
Calibration”.

6-8

Single Camera Calibrator App

Open the Camera Calibrator

* MATLAB Toolstrip: On the Apps tab, in the Image Processing and Computer Vision section,
click the Camera Calibrator icon.

* MATLAB command prompt: Enter cameraCalibrator

Prepare the Pattern, Camera, and Images

To better the results, use between 10 and 20 images of the calibration pattern. The calibrator
requires at least three images. Use uncompressed images or lossless compression formats such as
PNG. The calibration pattern and the camera setup must satisfy a set of requirements to work with
the calibrator. For greater calibration accuracy, follow these instructions for preparing the pattern,
setting up the camera, and capturing the images.

Note The Camera Calibrator app supports only checkerboard patterns. If you are using a different
type of calibration pattern, you can still calibrate your camera using the
estimateCameraParameters function. Using a different type of pattern requires that you supply
your own code to detect the pattern points in the image.

Prepare the Checkerboard Pattern

The Camera Calibrator app uses a checkerboard pattern. A checkerboard pattern is a convenient
calibration target. If you want to use a different pattern to extract key points, you can use the camera
calibration MATLAB functions directly. See “Single and Stereo Camera Calibration” for the list of
functions.

You can print (from MATLAB) and use the checkerboard pattern provided. The checkerboard pattern
you use must not be square. One side must contain an even number of squares and the other side
must contain an odd number of squares. Therefore, the pattern contains two black corners along one
side and two white corners on the opposite side. This criteria enables the app to determine the
orientation of the pattern. The calibrator assigns the longer side to be the x-direction.

To prepare the checkerboard pattern:

1 Attach the checkerboard printout to a flat surface. Imperfections on the surface can affect the
accuracy of the calibration.

6-9

matlab: open checkerboardPattern.pdf

6 Registration and Stereo Vision

6-10

2 Measure one side of the checkerboard square. You need this measurement for calibration. The
size of the squares can vary depending on printer settings.

Size of checkerboard square

3 To improve the detection speed, set up the pattern with as little background clutter as possible.
Camera Setup
To calibrate your camera, follow these rules:

* Keep the pattern in focus, but do not use autofocus.
+ Ifyou change zoom settings between images, the focal length changes.

Capture Images

For better results, use at least 10 to 20 images of the calibration pattern. The calibrator requires at
least three images. Use uncompressed images or images in lossless compression formats such as
PNG. For greater calibration accuracy:

* Capture the images of the pattern at a distance roughly equal to the distance from your camera to
the objects of interest. For example, if you plan to measure objects from 2 meters, keep your
pattern approximately 2 meters from the camera.

* Place the checkerboard at an angle less than 45 degrees relative to the camera plane.

e

I 6<45°

* Do not modify the images, (for example, do not crop them).
* Do not use autofocus or change the zoom settings between images.
* Capture the images of a checkerboard pattern at different orientations relative to the camera.

» Capture a variety of images of the pattern so that you have accounted for as much of the image
frame as possible. Lens distortion increases radially from the center of the image and sometimes

matlab: open checkerboardPattern.pdf

Single Camera Calibrator App

is not uniform across the image frame. To capture this lens distortion, the pattern must appear
close to the edges of the captured images.

e
R E

The Calibrator works with a range of checkerboard square sizes. As a general rule, your
checkerboard should fill at least 20% of the captured image. For example, the preceding images were
taken with a checkerboard square size of 108 mm, as the following montage shows:

HE N

Add Images and Select Camera Model

To begin calibration, you must add images. You can add saved images from a folder or add images
directly from a camera. The calibrator analyzes the images to ensure they meet the calibrator
requirements. The calibrator then detects the points on the checkerboard.

6-11

6 Registration and Stereo Vision

6-12

Add Images from File

On the Calibration tab, in the File section, click Add images, and then select From file. You can
add images from multiple folders by clicking Add images for each folder.

Acquire Live Images

To begin calibration, you must add images. You can acquire live images from a webcam using the
MATLAB Webcam support. To use this feature, you must install MATLAB Support Package for USB
Webcams. See “Install the MATLAB Support Package for USB Webcams” (Image Acquisition Toolbox)
for information on installing the support package. To add live images, follow these steps.

1

On the Calibration tab, in the File section, click Add Images, then select From camera.

This action opens the Camera tab opens. If you have only one webcam connected to your system,
it is selected by default and a live preview window opens. If you have multiple cameras
connected and want to use one different from the default, select that specific camera in the
Camera list.

Set properties for the camera to control the image (optional). Click the Camera Properties to
open a menu of the properties for the selected camera. This list varies depending on your device.

Use the sliders or drop-down list to change any available property settings. The Preview window
updates dynamically when you change a setting. When you are done setting properties, click
anywhere outside of the menu box to dismiss the properties list.

Enter a location for the acquired image files in the Save Location box by typing the path to the
folder or using the Browse button. You must have permission to write to the folder you select.

Set the capture parameters.

* To set the number of seconds between image captures, use the Capture Interval box or
slider. The default is 5 seconds, the minimum is 1 second, and the maximum is 60 seconds.

* To set the number of image captures, use the Number of images to capture box or slider.
The default is 20 images, the minimum is 2 images, and the maximum is 100 images.

In the default configuration, a total of 20 images are captured, one every 5 seconds.

The Preview window shows the live images streamed as RGB data. After you adjust any device
properties and capture settings, use the Preview window as a guide to line up the camera to
acquire the checkerboard pattern image you want to capture.

Click the Capture button. The number of images you set are captured and the thumbnails of the
snapshots appear in the Data Browser pane. They are automatically named incrementally and
are captured as .png files.

You can optionally stop the image capture before the designated number of images are captured
by clicking Stop Capture.

When you are capturing images of a checkerboard, after the designated number of images are
captured, a Checkerboard Square Size dialog box displays. Specify the size of the checkerboard
square, then click OK.

Single Camera Calibrator App

Data Browser

|
.

|

6
Imageb.png

%
Image.png

8
Image8.png

B

e\

R Imags9.png

Image Preview

The detection results are then calculated and displayed. For example:

Total images processed:
Added images:

Rejected images:

7 Click OK to dismiss the Detection Results dialog box.
8 When you have finished acquiring live images, click Close Image Capture to close the Camera

tab.

Analyze Images

After you add the images, the Checkerboard Square Size dialog box appears. Specify size of the
checkerboard square by entering the length of one side of a square from the checkerboard pattern.

6-13

6 Registration and Stereo Vision

Y
Checkerboard Square Size l = i

Size of checkerboard square: 25 mm -

oK

Size of checkerboard square

6-14

The calibrator attempts to detect a checkerboard in each of the added images, displaying an
Analyzing Images progress bar window, indicating detection progress. If any of the images are
rejected, the Detection Results dialog box appears, which contains diagnostic information. The
results indicate how many total images were processed, and of those processed, how many were
accepted, rejected, or skipped. The calibrator skips duplicate images.

il |
Detection Results l — | |i3-]
Total images processed: 13
Added images: i
Rejected images: 3 view images
oK
L ¥

To view the rejected images, click View images. The calibrator rejects duplicate images. It also
rejects images where the entire checkerboard could not be detected. Possible reasons for no
detection are a blurry image or an extreme angle of the pattern. Detection takes longer with larger
images and with patterns that contain a large number of squares.

View Images and Detected Points

The Data Browser pane displays a list of images with IDs. These images contain a detected pattern.
To view an image, select it from the Data Browser pane.

Single Camera Calibrator App

J

() Detected points
Checkerboard origin |

L
limage.jpeg

2:
2image.jpeg

3image.jpeg

m

dimage,jpeg

5
Simage,jpeg

Gimage,jpeg

The Image window displays the selected checkerboard image with green circles to indicate detected
points. You can verify that the corners were detected correctly using the zoom controls. The yellow
square indicates the (0,0) origin. The X and Y arrows indicate the checkerboard axes orientation.

Calibrate

Once you are satisfied with the accepted images, click the Calibrate button on the Calibration tab.
The default calibration settings assume the minimum set of camera parameters. Start by running the
calibration with the default settings. After evaluating the results, you can try to improve calibration
accuracy by adjusting the settings and adding or removing images and then calibrating again. If you
switch between standard and fisheye camera model, you must recalibrate.

Select Camera Model

You can select either a standard or fisheye camera model on the Calibration tab, in the Camera
Model section, select Standard or Fisheye.

You can switch camera models at any point in the session. You must calibrate again after any changes
you make to the app's settings. Click Options to access settings and optimizations for either camera
model.

Standard Model Options

When the camera has severe lens distortion, the app can fail to compute the initial values for the
camera intrinsics. If you have the manufacturer’s specifications for your camera and know the pixel
size, focal length, or lens characteristics, you can manually set initial guesses for camera intrinsics
and radial distortion. To set initial guesses, click Options > Optimization Options.

6-15

6 Registration and Stereo Vision

6-16

» Select the top checkbox and then enter a 3-by-3 matrix to specify initial intrinsics. If you do not
specify an initial guess, the function computes the initial intrinsic matrix using linear least
squares.

* Select the bottom checkbox and then enter a 2- or 3-element vector to specify the initial radial
distortion. If you do not provide a value, the function uses 0 as the initial value for all the
coefficients.

Fisheye Model Options

In the Camera Model section, with Fisheye selected, click Options. Select Estimate Alignment to
enable estimation of the axes alignment when the optical axis of the fisheye lens is not perpendicular
to the image plane.

Calibration Algorithm
See “Fisheye Calibration Basics” on page 6-2 for the fisheye camera model calibration algorithm.
The standard camera model calibration algorithm assumes a pinhole camera model:

]
K
t

* (X,Y,Z): world coordinates of a point.

wixyll=[XY Z1]

* (x,y): image coordinates of the corresponding image point in pixels.
* w: arbitrary homogeneous coordinates scale factor.

¢ K: camera intrinsic matrix, defined as.

fx 00

s fy0
cx Cy 1

The coordinates (c, c,) represent the optical center (the principal point), in pixels. When the x- and
y-axes are exactly perpendicular, the skew parameter, s, equals 0. The matrix elements are defined
as:

fi = F*s,

fy = F*sy

F is the focal length in world units, typically expressed in millimeters.

[sx, sy] are the number of pixels per world unit in the x and y direction respectively.

fx and f; are expressed in pixels.

* R: matrix representing the 3-D rotation of the camera .
* t: translation of the camera relative to the world coordinate system.

The camera calibration algorithm estimates the values of the intrinsic parameters, the extrinsic
parameters, and the distortion coefficients. Camera calibration involves these steps:

1 Solve for the intrinsics and extrinsics in closed form, assuming that lens distortion is zero. [1]

2 Estimate all parameters simultaneously, including the distortion coefficients, using nonlinear
least-squares minimization (Levenberg-Marquardt algorithm). Use the closed-form solution from
the preceding step as the initial estimate of the intrinsics and extrinsics. Set the initial estimate
of the distortion coefficients to zero. [1][2]

Single Camera Calibrator App

Evaluate Calibration Results

You can evaluate calibration accuracy by examining the reprojection errors, examining the camera
extrinsics, or viewing the undistorted image. For best calibration results, use all three methods of

evaluation.

Data Browser

1
goproll,jpg

goproDb.jpg

7
goprol7.jpg
:!E'

goprol2,jpg

Examine Reprojection Errors

[\ Image |

gopro06.jpg

O Detected points
Checkerboard origin

|+ Reprojected points

j Reprojection Errors

1.2

| Drag to select outliers

1

=
o

Mean Error in Pixels
=3 =]
B @

=
L]

— — —QOverall Mean Error: 0.59 pixels
T T T O T o T [T |

123456789101
Images

| Pattern-centric ‘:l Camera-centric “l

TS)

(milimeters) X (millimeters)

The reprojection errors are the distances, in pixels, between the detected and the reprojected points.
The Camera Calibrator app calculates reprojection errors by projecting the checkerboard points
from world coordinates, defined by the checkerboard, into image coordinates. The app then compares
the reprojected points to the corresponding detected points. As a general rule, mean reprojection
errors of less than one pixel are acceptable.

6-17

6 Registration and Stereo Vision

6-18

world coordinates of
checkerboard points

) ca meraParameters

o m /

points detected

from image points reprojected

using camera parameters

/7

reprojection error N’

The Camera Calibrator app displays, in pixels, the reprojection errors as a bar graph. The graph
helps you to identify which images that adversely contribute to the calibration. Select the bar graph
entry and remove the image from the list of images in the Data Browser pane.

Reprojection Errors Bar Graph
The bar graph displays the mean reprojection error per image, along with the overall mean error. The
bar labels correspond to the image IDs. The highlighted bars correspond to the selected images.

| Reprojection Errors |

0.2

01581

017

0.05 |

Mean Errorin Pixels

— — — Owverall Mean Error: 0.13 pixels
[T O T |

1 2 3 4 5 6 7 8
Images

Select an image in one of these ways:

* Click a corresponding bar in the graph.
* Select an image from the list of images in the Data Browser pane.
* Adjust the overall mean error. Click and slide the red line up or down to select outlier images.

Examine Extrinsic Parameter Visualization

The 3-D extrinsic parameters plot provides a camera-centric view of the patterns and a pattern-
centric view of the camera. The camera-centric view is helpful if the camera was stationary when the

Single Camera Calibrator App

images were captured. The pattern-centric view is helpful if the pattern was stationary. You can click
the cursor and hold down the mouse button with the rotate icon to rotate the figure. Click a
checkerboard (or camera) to select it. The highlighted data in the visualizations correspond to the
selected image in the list. Examine the relative positions of the pattern and the camera to determine
if they match what you expect. For example, a pattern that appears behind the camera indicates a
calibration error.

| Pattern-centric *| Camera-centric 0 | [Pattern-centric » l Camera-centric * |

-100 150 4
= 11
% E -100
| [if]
g o | E 50
E -
- 50
= M~
[100 100

200 100 -50
100 0 0, 200
0 -100 anIJSU e

(millimeters) X (millimeters) Y (millimeters) ¢ X (millimeters)

View Undistorted Image

To view the effects of removing lens distortion, click Show Undistorted in the View section of the
Calibration tab. If the calibration was accurate, the distorted lines in the image become straight.

Checking the undistorted images is important even if the reprojection errors are low. For example, if
the pattern covers only a small percentage of the image, the distortion estimation might be incorrect,
even though the calibration resulted in few reprojection errors. The following image shows an
example of this type of incorrect estimation for a single camera calibration.

6-19

6 Registration and Stereo Vision

6-20

While viewing the undistorted images, you can examine the fisheye images more closely by selecting
Fisheye Scale in the View section of the Calibration tab. Use the slider in the Scale Factor window
to adjust the scale of the image.

‘| A
Show Undistorted

ittt |1.834

gopro03.jpg

Improve Calibration

To improve the calibration, you can remove high-error images, add more images, or modify the
calibrator settings.

Add or Remove Images

Consider adding more images if:

* You have less than 10 images.
» The patterns do not cover enough of the image frame.

* The patterns do not have enough variation in orientation with respect to the camera.
Consider removing images if the images:
* The images have a high mean reprojection error.

* The images are blurry.

* The images contain a checkerboard at an angle greater than 45 degrees relative to the camera
plane.

Single Camera Calibrator App

N 6 < 450

* The images contain incorrectly detected checkerboard points.
Standard Model: Change the Number of Radial Distortion Coefficients

You can specify two or three radial distortion coefficients. On the Calibrations tab, in the Camera
Model section, with Standard selected, click Options. Select the Radial Distortion as either 2
Coefficients or 3 Coefficients. Radial distortion occurs when light rays bend more near the edges of
a lens than they do at its optical center. The smaller the lens, the greater the distortion.

Megative radial distortion Mo distortion Positive radial distortion
"pincushion” "barrel”

The radial distortion coefficients model this type of distortion. The distorted points are denoted as
(Xdistortedr ydistorted):

Xdistorted = x(1 + kl*rz + kz*r4 + k3*r6)
Vdistorted= y(1 + kl*rz + kz*r‘1 + k3*r6)

* X, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

* ki, ky, and k3 — Radial distortion coefficients of the lens.
o X2+ y?

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in wide-angle
lenses, you can select 3 coefficients to include k.

The undistorted pixel locations are in normalized image coordinates, with the origin at the optical
center. The coordinates are expressed in world units.

6-21

6 Registration and Stereo Vision

6-22

Standard Model: Compute Skew

When you select the Compute Skew check box, the calibrator estimates the image axes skew. Some
camera sensors contain imperfections that cause the x- and y-axes of the image to not be
perpendicular. You can model this defect using a skew parameter. If you do not select the check box,
the image axes are assumed to be perpendicular, which is the case for most modern cameras.

Standard Model: Compute Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential
distortion coefficients model this type of distortion.

Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensor are not parallel
(\Camera lens (\Camera lens
Vertical plane Vertical plane

|V

Camera
SENSOr Camera
SENSor
The distorted points are denoted as (Xgistorteds Vdistorted):
Xdistorted = X + [2 * P1 * X * y + D2 * (r2 + 2 * Xz)]
Vastorted = Y+ Ipp ¥ (P o+ 2 %) + 2 * p * x *]

* X, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

* p; and p, — Tangential distortion coefficients of the lens.
o rax?+)2
When you select the Compute Tangential Distortion check box, the calibrator estimates the

tangential distortion coefficients. Otherwise, the calibrator sets the tangential distortion coefficients
to zero.

Fisheye Model: Estimate Alignment
In the Camera Model section, with Fisheye selected, click Options. Select Estimate Alignment to

enable estimation of the axes alignment when the optical axis of the fisheye lens is not perpendicular
to the image plane.

Single Camera Calibrator App

Export Camera Parameters

When you are satisfied with calibration accuracy, click Export Camera Parameters. You can either
save and export the camera parameters to an object by selecting Export Camera Parameters or
generate the camera parameters as a MATLAB script.

Export Camera Parameters

Select Export Camera Parameters > Export Parameters to Workspace to create a
cameraParameters object in your workspace. The object contains the intrinsic and extrinsic
parameters of the camera and the distortion coefficients. You can use this object for various computer
vision tasks, such as image undistortion, measuring planar objects, and 3-D reconstruction. See
“Measuring Planar Objects with a Calibrated Camera”. You can optionally export the
cameraCalibrationErrors object, which contains the standard errors of estimated camera
parameters, by selecting the Export estimation errors check box.

Generate MATLAB Script

Select Export Camera Parameters > Generate MATLAB script to save your camera parameters
to a MATLAB script, enabling you to reproduce the steps from your calibration session.

References

[1] Zhang, Z. “A Flexible New Technique for Camera Calibration.” IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 22, Number. 11, 2000, pp. 1330-1334.

[2] Heikkila, J. and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” IEEE International Conference on Computer Vision and Pattern Recognition.
1997.

[3] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional
Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems
(IROS 2006). Beijing, China, October 7-15, 2006.

[4] Urban, S.,]J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional Camera
Calibration." ISPRS journal of Photogrammetry and Remove Sensing. Vol. 108, 2015, pp.72-
79.

See Also

Camera Calibrator | Stereo Camera Calibrator | cameraParameters |
detectCheckerboardPoints | estimateCameraParameters | generateCheckerboardPoints
| showExtrinsics | showReprojectionErrors | stereoParameters | undistortImage

Related Examples

. “Evaluating the Accuracy of Single Camera Calibration”
. “Measuring Planar Objects with a Calibrated Camera”

. “Structure From Motion From Two Views”

. “Structure From Motion From Multiple Views”

. “Depth Estimation From Stereo Video”

6-23

6 Registration and Stereo Vision

. “3-D Point Cloud Registration and Stitching”
. “Uncalibrated Stereo Image Rectification”
. Checkerboard pattern

More About

. “Stereo Camera Calibrator App” on page 6-25
. “Coordinate Systems”

External Websites
. Camera Calibration with MATLAB

6-24

matlab: open checkerboardPattern.pdf
https://www.mathworks.com/videos/camera-calibration-with-matlab-81233.html

Stereo Camera Calibrator App

Stereo Camera Calibrator App

In this section...

“Stereo Camera Calibrator Overview” on page 6-25
“Stereo Camera Calibration” on page 6-25

“Open the Stereo Camera Calibrator” on page 6-26
“Prepare Pattern, Camera, and Images” on page 6-26
“Add Image Pairs” on page 6-29

“Calibrate” on page 6-31

“Evaluate Calibration Results” on page 6-31
“Improve Calibration” on page 6-35

“Export Camera Parameters” on page 6-37

Stereo Camera Calibrator Overview

You can use the Stereo Camera Calibrator app to calibrate a stereo camera, which you can then
use to recover depth from images. A stereo system consists of two cameras: camera 1 and camera 2.
The app can either estimate or import the parameters of individual cameras. The app also calculates
the position and orientation of camera 2, relative to camera 1.

The Stereo Camera Calibrator app produces an object containing the stereo camera parameters.
You can use this object to

* Rectify stereo images using the rectifyStereoImages function.

* Reconstruct the 3-D scene using the reconstructScene function.

* Compute 3-D locations corresponding to matching pairs of image points using the triangulate
function.

The suite of calibration functions used by the Stereo Camera Calibrator app provide the workflow
for stereo system calibration. You can use these functions directly in the MATLAB workspace. For a
list of calibration functions, see “Single and Stereo Camera Calibration”.

Note You can use the Camera Calibrator app with cameras up to a field of view (FOV) of 95 degrees.

Stereo Camera Calibration

prepare images calibrate improve

Follow this workflow to calibrate your stereo camera using the app:

1 Prepare images, camera, and calibration pattern.

6-25

6 Registration and Stereo Vision

6-26

Add image pairs.

Calibrate the stereo camera.

Evaluate calibration accuracy.

Adjust parameters to improve accuracy (if necessary).
Export the parameters object.

N o o AW N

In some cases, the default values work well, and you do not need to make any improvements
before exporting parameters. You can also make improvements using the camera calibration
functions directly in the MATLAB workspace. For a list of functions, see “Single and Stereo
Camera Calibration”.

Open the Stereo Camera Calibrator

* MATLAB Toolstrip: On the Apps tab, in the Image Processing and Computer Vision section,
click the Stereo Camera Calibrator icon.

¢ MATLAB command prompt: Enter stereoCameraCalibrator

Prepare Pattern, Camera, and Images

To improve the results, use between 10 and 20 images of the calibration pattern. The calibrator
requires at least three images. Use uncompressed images or lossless compression formats such as
PNG. The calibration pattern and the camera setup must satisfy a set of requirements to work with
the calibrator. For greater calibration accuracy, follow these instructions for preparing the pattern,
setting up the camera, and capturing the images.

Prepare the Checkerboard Pattern

The Camera Calibrator app uses a checkerboard pattern. A checkerboard pattern is a convenient
calibration target. If you want to use a different pattern to extract key points, you can use the camera
calibration MATLAB functions directly. See “Single and Stereo Camera Calibration” for the list of
functions.

You can print (from MATLAB) and use the checkerboard pattern provided. The checkerboard pattern
you use must not be square. One side must contain an even number of squares and the other side
must contain an odd number of squares. Therefore, the pattern contains two black corners along one
side and two white corners on the opposite side. This criteria enables the app to determine the
orientation of the pattern. The calibrator assigns the longer side to be the x-direction.

matlab: open checkerboardPattern.pdf

Stereo Camera Calibrator App

To prepare the checkerboard pattern:
1 Attach the checkerboard printout to a flat surface. Imperfections on the surface can affect the
accuracy of the calibration.

2 Measure one side of the checkerboard square. You need this measurement for calibration. The
size of the squares can vary depending on printer settings.

Size of checkerboard square

3 To improve the detection speed, set up the pattern with as little background clutter as possible.
Camera Setup
To calibrate your camera, follow these rules:

* Keep the pattern in focus, but do not use autofocus.

» If you change zoom settings between images, the focal length changes.
Capture Images

For best results, use at least 10 to 20 images of the calibration pattern. The calibrator requires at
least three images. Use uncompressed images or images in lossless compression formats such as
PNG. For greater calibration accuracy:

* Capture the images of the pattern at a distance roughly equal to the distance from your camera to
the objects of interest. For example, if you plan to measure objects from 2 meters, keep your
pattern approximately 2 meters from the camera.

* Place the checkerboard at an angle less than 45 degrees relative to the camera plane.

I TR e

B <4s°

* Do not modify the images, (for example, do not crop them).

6-27

6 Registration and Stereo Vision

* Do not use autofocus or change the zoom settings between images.
* Capture the images of a checkerboard pattern at different orientations relative to the camera.

* Capture a variety of images of the pattern so that you have accounted for as much of the image
frame as possible. Lens distortion increases radially from the center of the image and sometimes
is not uniform across the image frame. To capture this lens distortion, the pattern must appear
close to the edges of the captured images.

i
W& | 2 8
HE A

* Make sure the checkerboard pattern is fully visible in both images of each stereo pair.

A

* Keep the pattern stationary for each image pair. Any motion of the pattern between taking image
1 and image 2 of the pair negatively affects the calibration.

* Create a stereo display, or anaglyph, by positioning the two cameras approximately 55 mm apart.
This distance represents the average distance between human eyes.

6-28

matlab: open checkerboardPattern.pdf

Stereo Camera Calibrator App

» For greater reconstruction accuracy at longer distances, position your cameras farther apart.

Add Image Pairs

To begin calibration, click , specifically two sets of stereo images of the checkerboard,one set from
each camera.

Load Images

You can add images from multiple folders by clicking Add images in the File section of the
Calibration tab. Select the location for the images corresponding to camera 1 using the Browse
button, then do the same for camera 2. Specify Size of checkerboard square by entering the length
of one side of a square from the checkerboard pattern.

Size of checkerboard square

Analyze Images

The calibrator attempts to detect a checkerboard in each of the added images, displaying an
Analyzing Images progress bar window, indicating detection progress. If any of the images are
rejected, the Detection Results dialog box appears, which contains diagnostic information. The
results indicate how many total images were processed, and of those processed, how many were
accepted, rejected, or skipped. The calibrator skips duplicate images.

Detection Results E' (=] @

-

Total stereo pairs processed: 11
Added stereo pairs: 10
Rejected stereo pairs: 1 viEw images

—

To view the rejected images, click View images. The calibrator rejects duplicate images. It also
rejects images where the entire checkerboard could not be detected. Possible reasons for no
detection are a blurry image or an extreme angle of the pattern. Detection takes longer with larger
images and with patterns that contain a large number of squares.

6-29

6 Registration and Stereo Vision

View Images and Detected Points

The Data Browser pane displays a list of image pairs with IDs. These image pairs contain a detected
pattern. To view an image, select it from the Data Browser pane.

4\ Stereo Camera Calibrator - Image - O *
CALIBRATION WE S e gl
|:|':,':| = % E} &, Zoomin — O Compute Intrinsics Radial Distortion: Compute: © |>
ke - -~ : insics O 2 Coefficients I Skew . et
(= Zoom Out Use Fixed Intrinsics

New Open Save Add :__ Default . 30 i M ial Distortion Optimizati Calibrate ~ Show Rectified Export Camera

Session Session Session v Images ¢] Pan Layout = Load Intrinsics Options Parameters v
FILE Z00M LAYOUT INTRINSICS OFTIONS OFTIMIZATION |CALIBRATE VIEW EXFORT -

Data Browser ® | Image
A

- -

1: leftd1.png & right01.png left01.png & right01.png

() Detected points
Checkerboard origin

= A

2: leftd2.png & rightl2.png

o

3: leftd3.png & right03.png

5: left05.ona & right05.ong ¥

The Image pane displays the selected checkerboard image pair with green circles to indicate
detected points. You can verify that the corners were detected correctly using the zoom controls. The
yellow square indicates the (0,0) origin. The X and Y arrows indicate the checkerboard axes
orientation.

Intrinsics

You can choose for the app to compute camera intrinsics or you can load pre-computed fixed
intrinsics. To load intrinsics into the app, select Use Fixed Intrinsics in the Intrinsics section of the
Calibration tab. The Radial Distortion and Compute options in the Options section are disabled
when you load intrinsics.

To load intrinsics as variables from your workspace, click Load Intrinsics. For example, if the
wideBaselineStereo struct contains the intrinsics for both cameras.

1ld = load('wideBaselineStereo');

intl = ld.intrinsicsl
int2 = ld.intrinsics2

6-30

Stereo Camera Calibrator App

Then, click Load Intrinsics to specify these variables in the dialog box, as shown.

4 Load intrinsics from W... —)4
Intrinsics variable for camera 1:

int1 ~

Intrinsics variable for camera 2:

int2 v

Ok Cancel

Calibrate

Once you are satisfied with the accepted image pairs, click the Calibrate button on the Calibration
tab. The default calibration settings assume the minimum set of camera parameters. Start by running
the calibration with the default settings. After evaluating the results, you can try to improve
calibration accuracy by adjusting the settings and adding or removing images, and then calibrate
again.

Optimization

When the camera has severe lens distortion, the app can fail to compute the initial values for the
camera intrinsics. If you have the manufacturer’s specifications for your camera and know the pixel
size, focal length, or lens characteristics, you can manually set initial guesses for camera intrinsics
and radial distortion. To set initial guesses, click Options > Optimization Options.

Note These options are not available for preloaded intrinsics.

» Select the top checkbox and then enter a 3-by-3 matrix to specify initial intrinsics. If you do not
specify an initial guess, the function computes the initial intrinsic matrix using linear least
squares.

» Select the bottom checkbox and then enter a 2- or 3-element vector to specify the initial radial
distortion. If you do not provide a value, the function uses 0 as the initial value for all the
coefficients.

Evaluate Calibration Results
You can evaluate calibration accuracy by examining the reprojection errors, examining the camera

extrinsics, or viewing the undistorted image. For best calibration results, use all three methods of
evaluation.

6-31

6 Registration and Stereo Vision

4\ Stereo Camera Calibrator - Camera-centric

CALIBRATION
E::Il:l "j = @ (#, ZoomIn E © Compute Intrinsics Radial Distortion: Compute: @
; (=} Zoom Out ~ Use Fixed Intrinsics @ 2 Coefficients [Skew ¥
Hew o] Save Add = Default - i ial Di i Optimization | Calibrate ~ Show Rectified Export Camera
; pep bE Mot Wl 3 Coefficients I Tangential Distortion ~ OPtimi po!
Session Session Session ges| §'] Layout © . trinsi Options | Parameters «
FILE ZOOM LAY OUT INTRINSICS OFTIONS OFTIMIZATION |CALIBRATE VIEW EXFORT =
Data Browser ® || Image |

A AN i
3: left03.png & right03.png
(E < | Reprojection Errors 0 | | Pattern-centric J’ Camera-centric = 1
0.08
|
@ W
& 0.06 2 400
w
£ E =l
E 0.04 T w0
= £
-
5002
2 — Overall Mean Error: 0.06 pixels 200
: E . = 0 | O 5 O g 100
g pocmit 100
5: leftD5.pna & right05.ong [¥] 1 2 3 4 5 [} 7 B g 10 Z {millimeters) o X (millimeters)
< > Image Pairs

Examine Reprojection Errors

The reprojection errors are the distances, in pixels, between the detected and the reprojected points.
The Stereo Camera Calibrator app calculates reprojection errors by projecting the checkerboard
points from world coordinates, defined by the checkerboard, into image coordinates. The app then
compares the reprojected points to the corresponding detected points. As a general rule, mean
reprojection errors of less than one pixel are acceptable.

6-32

Stereo Camera Calibrator App

world coordinates of
checkerboard points

StE' reoParameters

~ BRI

points reprojected
using stereo parameters

points detected
from image pairs

— .’r

reprojection error 4

The Stereo Calibration App displays, in pixels, the reprojection errors as a bar graph. The graph
helps you to identify which images that adversely contribute to the calibration. Select the bar graph
entry and remove the image from the list of images in the Data Browser pane.

Reprojection Errors Bar Graph
The bar graph displays the mean reprojection error per image, along with the overall mean error. The
bar labels correspond to the image IDs. The highlighted bars correspond to the selected image pair.

J Reprojection Errors “’1

I camera 1
0.12 ' ' ' ' —| [__]Camera 2
— — — (Owverall Mean Error: 0.09 pixels
01
L
% 0.08
o
=
S 0.06
LU
@
a 0.04
=
0.02
1]
1 2 3 4 5 6 7 8 9 10
Image Pairs

Select an image pair in one of these ways:

6-33

6 Registration and Stereo Vision

» Clicking the corresponding bar in the graph.
» Select the image pair from the list in the Data Browser pane.
* Adjust the overall mean error. Click and slide the red line up or down to select outlier images.

Examine Extrinsic Parameter Visualization

The 3-D extrinsic parameters plot provides a camera-centric view of the patterns and a pattern-
centric view of the camera. The camera-centric view is helpful if the camera was stationary when the
images were captured. The pattern-centric view is helpful if the pattern was stationary. You can click
the cursor and hold down the mouse button with the rotate icon to rotate the figure. Click a
checkerboard (or camera) to select it. The highlighted data in the visualizations correspond to the
selected image in the list. Examine the relative positions of the pattern and the camera to determine
if they match what you expect. For example, a pattern that appears behind the camera indicates a

calibration error.

| Pattern-centric [Camera-centric 1 [Pattern-centric 1Camera—centric

. 50 | gl
Lt

Y (millimeters)
wn n
oo o
P T SR N
£ x

5

(millimeters

o

(=1

(=]
1

B
=
=

o

il

=

=
1

200
200 [100

=
|

=

Z {millimeters 0 -100
[) X (millimeters) N 0 100 N
X (millimeters) Y millimeters)

100

Show Rectified Images

To view the effects of stereo rectification, click Show Rectified in the View section of the
Calibration tab. If the calibration was accurate, the images become undistorted and row-aligned.

| Image

laftd1.pna & right01.png

i Datactad paints
-+ Reprojeded painks

6-34

Stereo Camera Calibrator App

Checking the rectified images is important even if the reprojection errors are low. For example, if the
pattern covers only a small percentage of the image, the distortion estimation might be incorrect,
even though the calibration resulted in few reprojection errors.The following image shows an
example of this type of incorrect estimation for a single camera calibration.

Improve Calibration

To improve the calibration, you can remove high-error image pairs, add more image pairs, or modify
the calibrator settings.

Add or Remove Images
Consider adding more images if:

* You have less than 10 images.
* The patterns do not cover enough of the image frame.

* The patterns do not have enough variation in orientation with respect to the camera.
Consider removing images if the images:

* The images have a high mean reprojection error.
* The images are blurry.

* The images contain a checkerboard at an angle greater than 45 degrees relative to the camera
plane.

I+ TR e

o [-
— 8 < 45°

6-35

6 Registration and Stereo Vision

6-36

* The images contain incorrectly detected checkerboard points.
Change the Number of Radial Distortion Coefficients

You can specify 2 or 3 radial distortion coefficients by selecting the corresponding radio button from
the Options section. Radial distortion occurs when light rays bend more near the edges of a lens
than they do at its optical center. The smaller the lens, the greater the distortion.

ZIERN
:_: aname®

Megative radial distortion Mo distortion Positive radial distortion
"pincushion” "barrel”

The radial distortion coefficients model this type of distortion. The distorted points are denoted as
(Xdistorteds ydistorted):

Xdistorted = x(1 + ky*r? + ky*rt + ks*16)
Vdistorted= y(l + kl*rz + kz*r“1 + k3*r6)

* x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

* ki, ky, and k; — Radial distortion coefficients of the lens.
o X2+ y?

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in wide-angle
lenses, you can select 3 coefficients to include k.

Compute Skew

When you select the Compute Skew check box, the calibrator estimates the image axes skew. Some
camera sensors contain imperfections that cause the x- and y-axes of the image to not be
perpendicular. You can model this defect using a skew parameter. If you do not select the check box,
the image axes are assumed to be perpendicular, which is the case for most modern cameras.

Compute Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential
distortion coefficients model this type of distortion.

Stereo Camera Calibrator App

Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensor are not parallel
mﬁan'lera lens [\Camera lens
Vertical plane Vertical plane

|V

SENs0r Lamera
SENs0r

The distorted points are denoted as (Xgistorted, Vdistorted):
Xdistorted = X + [2 * p1 * X * y + P2 * (T‘2 + 2 * Xz)]
Ydistorted = y + [p1 * (r? + 2 *y ?) + 2 * p2 * X * \

* x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

* p; and p, — Tangential distortion coefficients of the lens.
o rax? 4+ y?

When you select the Compute Tangential Distortion check box, the calibrator estimates the
tangential distortion coefficients. Otherwise, the calibrator sets the tangential distortion coefficients
to zero.

Export Camera Parameters

When you are satisfied with calibration accuracy, click Export Camera Parameters. You can either
save and export the camera parameters to an object by selecting Export Camera Parameters or
generate the camera parameters as a MATLAB script.

Export Camera Parameters

Select Export Camera Parameters > Export Parameters to Workspace to create a
stereoParameters object in your workspace. The object contains the intrinsic and extrinsic
parameters of the camera and the distortion coefficients. You can use this object for various computer
vision tasks, such as image undistortion, measuring planar objects, and 3-D reconstruction. See
“Measuring Planar Objects with a Calibrated Camera”. You can optionally export the
stereoCalibrationErrors object, which contains the standard errors of estimated stereo camera
parameters, by selecting the Export estimation errors check box.

Generate MATLAB Script

Select Export Camera Parameters > Generate MATLAB script to save your camera parameters
to a MATLAB script, enabling you to reproduce the steps from your calibration session.

6-37

6 Registration and Stereo Vision

6-38

References

[1] Zhang, Z. “A Flexible New Technique for Camera Calibration”. IEEE Transactions on Pattern
Analysis and Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330-1334.

[2] Heikkila, J, and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” IEEE International Conference on Computer Vision and Pattern Recognition.
1997.

See Also

Camera Calibrator | Stereo Camera Calibrator | cameraParameters |
detectCheckerboardPoints | estimateCameraParameters | generateCheckerboardPoints
| showExtrinsics | showReprojectionErrors | stereoParameters | undistortImage

Related Examples

. “Evaluating the Accuracy of Single Camera Calibration”

. “Measuring Planar Objects with a Calibrated Camera”

. “Structure From Motion From Two Views”

. “Structure from Motion from Multiple Views” on page 6-46
. “Depth Estimation From Stereo Video”

. “3-D Point Cloud Registration and Stitching”

. “Uncalibrated Stereo Image Rectification”

. Checkerboard pattern

More About

. “Single Camera Calibrator App” on page 6-8
. “Coordinate Systems”

External Websites
. Camera Calibration with MATLAB

matlab: open checkerboardPattern.pdf
https://www.mathworks.com/videos/camera-calibration-with-matlab-81233.html

What Is Camera Calibration?

What Is Camera Calibration?

Geometric camera calibration, also referred to as camera resectioning, estimates the parameters of a
lens and image sensor of an image or video camera. You can use these parameters to correct for lens
distortion, measure the size of an object in world units, or determine the location of the camera in the
scene. These tasks are used in applications such as machine vision to detect and measure objects.
They are also used in robotics, for navigation systems, and 3-D scene reconstruction.

Examples of what you can do after calibrating your camera:

Epti1l_.!5|i1g d

Estimate D

Estimate 3-D Structure
Stereo Camera Objects from Camera Motion

Camera parameters include intrinsics, extrinsics, and distortion coefficients. To estimate the camera
parameters, you need to have 3-D world points and their corresponding 2-D image points. You can get
these correspondences using multiple images of a calibration pattern, such as a checkerboard. Using
the correspondences, you can solve for the camera parameters. After you calibrate a camera, to
evaluate the accuracy of the estimated parameters, you can:

* Plot the relative locations of the camera and the calibration pattern

* Calculate the reprojection errors.

* Calculate the parameter estimation errors.

Use the Camera Calibrator to perform camera calibration and evaluate the accuracy of the
estimated parameters.

Camera Models

The Computer Vision Toolbox contains calibration algorithms for the pinhole camera model and the
fisheye camera model.

6-39

6 Registration and Stereo Vision

6-40

oy
o

Pinhole Fisheye

The pinhole calibration algorithm is based on the model proposed by Jean-Yves Bouguet [3]. The
model includes, the pinhole camera model [1] and lens distortion [2].The pinhole camera model does
not account for lens distortion because an ideal pinhole camera does not have a lens. To accurately
represent a real camera, the full camera model used by the algorithm includes the radial and
tangential lens distortion.

Because of the extreme distortion a fisheye lens produces, the pinhole model cannot model a fisheye

camera. For details on camera calibration using the fisheye model, see “Fisheye Calibration Basics”
on page 6-2.

Pinhole Camera Model

A pinhole camera is a simple camera without a lens and with a single small aperture. Light rays pass
through the aperture and project an inverted image on the opposite side of the camera. Think of the
virtual image plane as being in front of the camera and containing the upright image of the scene.

2-Dimage| | Image plane| |Focal peint| | Virtual image plane| | 3-D object

What Is Camera Calibration?

The pinhole camera parameters are represented in a 4-by-3 matrix called the camera matrix. This
matrix maps the 3-D world scene into the image plane. The calibration algorithm calculates the
camera matrix using the extrinsic and intrinsic parameters. The extrinsic parameters represent the
location of the camera in the 3-D scene. The intrinsic parameters represent the optical center and
focal length of the camera.

/W[xy1]=[XYZI]P

e o’
Scale factor Image points World paints

R
/Pz[f]li

Camera matrix Vo [rtrin sic matrix
Extrinsics

FRotation and translation

The world points are transformed to camera coordinates using the extrinsics parameters. The camera
coordinates are mapped into the image plane using the intrinsics parameters.

Image - Pixel Camera ‘Waorld
" raint
— o
Intrirsics K Extrinsir_«,[t]

Camera Calibration Parameters

The calibration algorithm calculates the camera matrix using the extrinsic and intrinsic parameters.
The extrinsic parameters represent a rigid transformation from 3-D world coordinate system to the 3-
D camera’s coordinate system. The intrinsic parameters represent a projective transformation from
the 3-D camera’s coordinates into the 2-D image coordinates.

Waorld Camara - Pinal
coordinates coordinates © coordinates
(XY 2Z] - [xy]
Extrinsic Intrinsic
parameters parameters

6-41

6 Registration and Stereo Vision

Extrinsic Parameters

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin of the camera’s
coordinate system is at its optical center and its x- and y-axis define the image plane.

i
L

Intrinsic Parameters

The intrinsic parameters include the focal length, the optical center, also known as the principal
point, and the skew coefficient. The camera intrinsic matrix, K, is defined as:

fx 00

s fy0
cx Cy 1

The pixel skew is defined as:

P«
Skew

[cx ¢y] — Optical center (the principal point), in pixels.

(fx fy) — Focal length in pixels.

fx =Flpx

fy="Flpy

F — Focal length in world units, typically expressed in millimeters.

(Px, Py) — Size of the pixel in world units.

s — Skew coefficient, which is non-zero if the image axes are not perpendicular.
s = fytana

Distortion in Camera Calibration

The camera matrix does not account for lens distortion because an ideal pinhole camera does not
have a lens. To accurately represent a real camera, the camera model includes the radial and
tangential lens distortion.

6-42

What Is Camera Calibration?

Radial Distortion

Radial distortion occurs when light rays bend more near the edges of a lens than they do at its optical
center. The smaller the lens, the greater the distortion.

!-IIII--

Megative radial distortion Mo distortion Positive radial distortion
"pincushion” "barrel”

The radial distortion coefficients model this type of distortion. The distorted points are denoted as
(Xdistortedl ydistorted):

Xdistorted = x(1 + ky*r? + ko*rt + ks*rf)
Vdistorted™ Y(l + kl*r2 + kZ*r4 + k3*r6)

* x, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

* ki, ky, and k; — Radial distortion coefficients of the lens.
o X2+ y?

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in wide-angle
lenses, you can select 3 coefficients to include k;.

Tangential Distortion

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential
distortion coefficients model this type of distortion.

Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensor are not parallel
(\Camera lens [\Car‘nera lens
Vertical plane Vertical plane

Camera
SEMNS0r Camera
SEenNs0r

6-43

6 Registration and Stereo Vision

6-44

The distorted points are denoted as (Xgistorted: Vdistorted):
Xdistorted = X + [2 * p1 * X * y + P2 * (r? + 2 * x2)]
Ydistorted = y + [p1 * (r? + 2 *y ?) + 2 * P2 * X * yl

* X, y — Undistorted pixel locations. x and y are in normalized image coordinates. Normalized image
coordinates are calculated from pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

* p; and p, — Tangential distortion coefficients of the lens.

o X2+ y?

References

[1] Zhang, Z. “A Flexible New Technique for Camera Calibration.” IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 22, No. 11, 2000, pp. 1330-1334.

[2] Heikkila, J., and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” IEEE International Conference on Computer Vision and Pattern
Recognition.1997.

[3] Bouguet, J. Y. “Camera Calibration Toolbox for Matlab.” Computational Vision at the California
Institute of Technology. Camera Calibration Toolbox for MATLAB.

[4] Bradski, G., and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library.
Sebastopol, CA: O'Reilly, 2008.

See Also

Apps
Camera Calibrator | Stereo Camera Calibrator

Related Examples
. “Single Camera Calibrator App” on page 6-8
. “Stereo Camera Calibrator App” on page 6-25

. “Evaluating the Accuracy of Single Camera Calibration”

. “Fisheye Calibration Basics” on page 6-2

. “Configure Monocular Fisheye Camera” (Automated Driving Toolbox)
. “Calibrate a Monocular Camera” (Automated Driving Toolbox)

. “Measuring Planar Objects with a Calibrated Camera”

. “Structure From Motion From Two Views”

. “Structure From Motion From Multiple Views”

http://www.vision.caltech.edu/bouguetj/calib_doc/

Structure from Motion

Structure from Motion

In this section...

“Structure from Motion from Two Views” on page 6-45
“Structure from Motion from Multiple Views” on page 6-46

Structure from motion (SfM) is the process of estimating the 3-D structure of a scene from a set of 2-
D images. SfM is used in many applications, such as 3-D scanning and augmented reality.

SfM can be computed in many different ways. The way in which you approach the problem depends
on different factors, such as the number and type of cameras used, and whether the images are
ordered. If the images are taken with a single calibrated camera, then the 3-D structure and camera
motion can only be recovered up to scale. up to scale means that you can rescale the structure and
the magnitude of the camera motion and still maintain observations. For example, if you put a camera
close to an object, you can see the same image as when you enlarge the object and move the camera
far away. If you want to compute the actual scale of the structure and motion in world units, you need
additional information, such as:

* The size of an object in the scene

* Information from another sensor, for example, an odometer.

Structure from Motion from Two Views

For the simple case of structure from two stationary cameras or one moving camera, one view must
be considered camera 1 and the other one camera 2. In this scenario, the algorithm assumes that
camera 1 is at the origin and its optical axis lies along the z-axis.

(0,0,0) (x,v,2)

camera 1 Camera J

1 SfM requires point correspondences between images. Find corresponding points either by
matching features or tracking points from image 1 to image 2. Feature tracking techniques, such
as Kanade-Lucas-Tomasi (KLT) algorithm, work well when the cameras are close together. As
cameras move further apart, the KLT algorithm breaks down, and feature matching can be used
instead.

camera 1 camera 2

6-45

6 Registration and Stereo Vision

6-46

5

Distance Between Method for Finding Point |Example

Cameras (Baseline) Correspondences

Wide Match features using “Find Image Rotation and
matchFeatures Scale Using Automated

Feature Matching”

Narrow Track features using “Face Detection and Tracking
vision.PointTracker Using the KLT Algorithm”

To find the pose of the second camera relative to the first camera, you must compute the
fundamental matrix. Use the corresponding points found in the previous step for the
computation. The fundamental matrix describes the epipolar geometry of the two cameras. It
relates a point in one camera to an epipolar line in the other camera. Use the
estimateFundamentalMatrix function to estimate the fundamental matrix.

Paint

\
DI?.

E\/’E‘I! Right Observation Point

Input the fundamental matrix to the relativeCameraPose function. relativeCameraPose
returns the orientation and the location of the second camera in the coordinate system of the
first camera. The location can only be computed up to scale, so the distance between two
cameras is set to 1. In other words, the distance between the cameras is defined to be 1 unit.

Determine the 3-D locations of the matched points using triangulate. Because the pose is up
to scale, when you compute the structure, it has the right shape but not the actual size.

0

Left Observation Paint

The triangulate function takes two camera matrices, which you can compute using
cameraMatrix.

Use pcshow to display the reconstruction, and use plotCamera to visualize the camera poses.

To recover the scale of the reconstruction, you need additional information. One method to recover

the scale is to detect an object of a known size in the scene. The “Structure From Motion From Two
Views” example shows how to recover scale by detecting a sphere of a known size in the point cloud
of the scene.

Structure from Motion from Multiple Views

For most applications, such as robotics and autonomous driving, SfM uses more than two views.

Structure from Motion

0,00 A

camera 1

The approach used for SfM from two views can be extended for multiple views. The set of multiple
views used for SfM can be ordered or unordered. The approach taken here assumes an ordered
sequence of views. SfM from multiple views requires point correspondences across multiple images,
called tracks. A typical approach is to compute the tracks from pairwise point correspondences. You
can use imageviewset to manage the pairwise correspondences and find the tracks. Each track
corresponds to a 3-D point in the scene. To compute 3-D points from the tracks, use
triangulateMultiview.

{x.y.2)

, ~
- *~

Using the approach in SfM from two views, you can find the pose of camera 2 relative to camera 1. To
extend this approach to the multiple view case, find the pose of camera 3 relative to camera 2, and so
on. The relative poses must be transformed into a common coordinate system. Typically, all camera
poses are computed relative to camera 1 so that all poses are in the same coordinate system. You can
use imageviewset to manage camera poses. The imageviewset object stores the views and
connections between the views.

6-47

6 Registration and Stereo Vision

6-48

W% Variables - vSet

| wSet [
1xd viewSet
Property Value
e Views | 54 table
E Connections &5 table
EE| MumViews 5

F“r“w_,“ﬂp

Every camera pose estimation from one view to the next contains errors. The errors arise from
imprecise point localization in images, and from noisy matches and imprecise calibration. These
errors accumulate as the number of views increases, an effect known as drift. One way to reduce the
drift, is to refine camera poses and 3-D point locations. The nonlinear optimization algorithm, called
bundle adjustment, implemented by the bundleAdjustment function, can be used for the
refinement.

I,,.#““..-H-ru
| e
Estimated moving camera ;.\N”}f
TN St .
Actual moving camera path

i

The “Structure From Motion From Two Views” example shows how to reconstruct a 3-D scene from a
sequence of 2-D views. The example uses the Camera Calibrator app to calibrate the camera that
takes the views. It uses a imageviewset object to store and manage the data associated with each
view.

See Also

Apps
Camera Calibrator | Stereo Camera Calibrator

Functions
bundleAdjustment | cameraMatrix | estimateFundamentalMatrix | matchFeatures |

pointTrack | relativeCameraPose | triangulateMultiview

Objects
imageviewset | vision.PointTracker

Structure from Motion

See Also

Related Examples

. “Structure From Motion From Two Views”
. “Structure From Motion From Multiple Views”
. “Monocular Visual Simultaneous Localization and Mapping”

6-49

Object Detection

* “Getting Started with SSD Multibox Detection” on page 7-2

» “Getting Started with Object Detection Using Deep Learning” on page 7-6

* “How Labeler Apps Store Exported Pixel Labels” on page 7-9

* “Anchor Boxes for Object Detection” on page 7-14

* “Getting Started with YOLO v2” on page 7-19

* “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” on page 7-23
* “Getting Started with Semantic Segmentation Using Deep Learning” on page 7-29
* “Training Data for Object Detection and Semantic Segmentation” on page 7-31
* “Create Automation Algorithm for Labeling” on page 7-35

* “Label Pixels for Semantic Segmentation” on page 7-39

* “Get Started with the Image Labeler” on page 7-49

* “Choose an App to Label Ground Truth Data” on page 7-62

* “Get Started with the Video Labeler” on page 7-64

* “Use Custom Image Source Reader for Labeling” on page 7-79

* “Use Sublabels and Attributes to Label Ground Truth Data” on page 7-81

* “Temporal Automation Algorithms” on page 7-85

* “View Summary of Ground Truth Labels” on page 7-87

* “Share and Store Labeled Ground Truth Data” on page 7-91

* “Keyboard Shortcuts and Mouse Actions for Image Labeler” on page 7-97

» “Keyboard Shortcuts and Mouse Actions for Video Labeler” on page 7-100

* “Point Feature Types” on page 7-103

* “Local Feature Detection and Extraction” on page 7-109

* “Train a Cascade Object Detector” on page 7-122

* “Train Optical Character Recognition for Custom Fonts” on page 7-135

* “Troubleshoot ocr Function Results” on page 7-139

* “Create a Custom Feature Extractor” on page 7-140

* “Image Retrieval with Bag of Visual Words” on page 7-143

* “Image Classification with Bag of Visual Words” on page 7-146

7 Object Detection

Getting Started with SSD Multibox Detection

The single shot multibox detector (SSD) uses a single stage object detection network that merges
detections predicted from multiscale features. The SSD is faster than two-stage detectors, such as the
Faster R-CNN detector, and can localize objects more accurately compared to single-scale feature
detectors, such as the YOLO v2 detector.

The SSD runs a deep learning CNN on an input image to produce network predictions from multiple
feature maps. The object detector gathers and decodes predictions to generate bounding boxes.

Decode |
Predictions

Feature Map
Fredictions

Predict Objects in the Image

SSD uses anchor boxes to detect classes of objects in an image. For more details, see “Anchor Boxes
for Object Detection” on page 7-14. The SSD predicts these two attributes for each anchor box.

* Anchor box offsets — Refine the anchor box position.
* Class probability — Predict the class label assigned to each anchor box.

This figure shows predefined anchor boxes (the dotted lines) at each location in a feature map and
the refined location after offsets are applied. Matched boxes with a class are in blue and orange.

Predefined anchor box location

| e |
ey — 1 i i
P e H = g i 1 1 L 1 |
AEEFEEIEEE , \ '
[S S il i Predicted offset
T b :)
I.T-T‘r |_|'.:-;:_..:| L
- il - E o == o

Refined location of anchor box

Ground fruth image and Anchor boxes at each predefined |
bounding boxes location in each feature map

7-2

Getting Started with SSD Multibox Detection

Transfer Learning

With transfer learning, you can use a pretrained CNN as the feature extractor in an SSD detection
network. Use the ssdLayers function to create an SSD detection network from any pretrained CNN,
such as MobileNet v2. For a list of pretrained CNNs, see “Pretrained Deep Neural Networks”
(Deep Learning Toolbox).

You can also design a custom model based on a pretrained image classification CNN. For more
details, see “Design an SSD Detection Network” on page 7-3.

Design an SSD Detection Network

You can design a custom SSD model programatically or use the Deep Network Designer app to
manually create a network. The app incorporates Computer Vision Toolbox SSD features.

Classification

O Regression
Prediction layers O Regression

Feature Extraction Network

Classification

To design an SSD Multibox detection network, follow these steps.

1 Start the model with a feature extractor network, which can be initialized from a pretrained CNN
or trained from scratch.

2 Select prediction layers from the feature extraction network. Any layer from the feature
extraction network can be used as a prediction layer. However, to leverage the benefits of using
multiscale features for object detection, choose feature maps of different sizes.

3 Specify anchor boxes to the prediction layer by attaching an anchorBoxLayer to each of the
layers.

4 Connect the outputs of the anchorBoxLayer objects to a classification branch and to a
regression branch. The classification branch has at least one convolution layer that predicts the
class for each tiled anchor box. The regression branch has at least one convolution layer that
predicts anchor box offsets. You can add more layers in the classification and regression
branches, however, the final convolution layer (before the merge layer) must have the number of
filters according to this table.

Branch Number of Filters
Classification Number of anchor boxes + 1 (for background class)
Regression Four times the number of anchor boxes

5 For all prediction layers, combine the outputs of the classification branches by using the
ssdMergelLayer object. Connect the ssdMergelayer object to a softmaxLayer object,

7 Object Detection

followed by a focalLossLayer object. Gather all outputs of the regression branches by using
the ssdMergelLayer object again. Connect the ssdMergelLayer output to an
rcnnBoxRegressionlLayer object.

For more details on creating this type of network, see “Create SSD Object Detection Network”

Train an Object Detector and Detect Objects with an SSD Model

To learn how to train an object detector by using the SSD deep learning technique, see the “Object
Detection Using SSD Deep Learning” example.

Code Generation

To learn how to generate CUDA® code using the SSD object detector (created using the
ssdObjectDetector object), see “Code Generation for Object Detection by Using Single Shot
Multibox Detector”.

Label Training Data for Deep Learning

You can use the Image Labeler, Video Labeler, or Ground Truth Labeler (available in Automated
Driving Toolbox™) apps to interactively label pixels and export label data for training. The apps can
also be used to label rectangular regions of interest (ROIs) for object detection, scene labels for
image classification, and pixels for semantic segmentation.

o =5

T
0

References

[1] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C. Berg. "SSD: Single Shot MultiBox Detector." In Computer Vision - ECCV 2016,
edited by Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, 9905:21-37. Cham: Springer
International Publishing, 2016. https://doi.org/10.1007/978-3-319-46448-0 2.

See Also

Apps
Deep Network Designer | Ground Truth Labeler | Image Labeler | Video Labeler

Objects
ssdObjectDetector

Getting Started with SSD Multibox Detection

Functions
analyzeNetwork | ssdLayers | trainSSDObjectDetector

Related Examples

. “Object Detection Using SSD Deep Learning”
. “Create SSD Object Detection Network”

More About

. “Anchor Boxes for Object Detection” on page 7-14
. “Deep Learning in MATLAB” (Deep Learning Toolbox)
. “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

7-5

7 Object Detection

Getting Started with Object Detection Using Deep Learning

Object detection using deep learning provides a fast and accurate means to predict the location of an
object in an image. Deep learning is a powerful machine learning technique in which the object
detector automatically learns image features required for detection tasks. Several techniques for
object detection using deep learning are available such as Faster R-CNN, you only look once (YOLO)
v2, and single shot detection (SSD).

Applications for object detection include:

* Image classification
* Scene understanding
* Self-driving vehicles
* Surveillance

Create Training Data for Object Detection

Use a labeling app to interactively label ground truth data in a video, image sequence, image
collection, or custom data source. You can label object detection ground truth using rectangle labels,
which define the position and size of the object in the image.

it e i i

* “Choose an App to Label Ground Truth Data” on page 7-62
* “Training Data for Object Detection and Semantic Segmentation” on page 7-31

Augment and Preprocess Data
Using data augmentation provides a way to use limited data sets for training. Minor changes, such as

translation, cropping, or transforming an image, provide, new, distinct, and unique images that you
can use to train a robust detector. Datastores are a convenient way to read and augment collections

Getting Started with Object Detection Using Deep Learning

of data. Use imageDatastore and the boxLabelDatastore to create datastores for images and
labeled bounding box data.

* “Augment Bounding Boxes for Object Detection” (Deep Learning Toolbox)

* “Preprocess Images for Deep Learning” (Deep Learning Toolbox)

* “Preprocess Data for Domain-Specific Deep Learning Applications” (Deep Learning Toolbox)

For more information about augmenting training data using datastores, see “Datastores for Deep
Learning” (Deep Learning Toolbox), and “Perform Additional Image Processing Operations Using
Built-In Datastores” (Deep Learning Toolbox).

Create Object Detection Network

Each object detector contains a unique network architecture. For example, the Faster R-CNN
detector uses a two-stage network for detection, whereas the YOLO v2 detector uses a single stage.
Use functions like fasterRCNNLayers or yolov2Layers to create a network. You can also design a
network layer by layer using the Deep Network Designer.

» “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

* “Design a YOLO v2 Detection Network” on page 7-20

* “Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model” on page 7-25

Train Detector and Evaluate Results

Use the trainFasterRCNNObjectDetector, trainYOLOv20bjectDetector,
trainSSDObjectDetector functions to train an object detector. Use the
evaluateDetectionMissRate and evaluateDetectionPrecision functions to evaluate the
training results.

* “Train Faster R-CNN Vehicle Detector”

* Train YOLO v2 Object Detector

* “Train SSD Object Detector”

Detect Objects Using Deep Learning Detectors

Detect objects in an image using the trained detector. For example, the partial code shown below
uses the trained detector on an image I. Use the detect object function on
fasterRCNNObjectDetector, yolov20bjectDetector, or ssd0bjectDetector objects to
return bounding boxes, detection scores, and categorical labels assigned to the bounding boxes.

I = imread(input image)
[bboxes,scores,labels] = detect(detector,I)

* “Object Detection Using YOLO v2 Deep Learning”
* “Object Detection Using SSD Deep Learning”
* “Object Detection Using Faster R-CNN Deep Learning”

7-7

7 Object Detection

See Also

Apps
Image Labeler | Video Labeler

More About

. “Getting Started with YOLO v2” on page 7-19

. “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” on page 7-23
. “Getting Started with SSD Multibox Detection” on page 7-2

How Labeler Apps Store Exported Pixel Labels

How Labeler Apps Store Exported Pixel Labels

When you create and export pixel labels from the Image Labeler, Video Labeler, or Ground Truth
Labeler (requires Automated Driving Toolbox) app, two sets of data are saved.

» A folder named PixelLabelData, which contains the PNG files of pixel label information. These
labels are encoded as indexed values.

* A MATile containing the pixel label data, along with any other label data. This data is stored in a
groundTruth object, or, if you are using the Ground Truth Labeler app, a
groundTruthMultisignal object. For pixel label data, the object also stores correspondences
between image or video frames and the PNG files.

Pixel label data

% uint8 PNGs

;erE'.l-'l_IZII' cal matrix;

Labelerapp /" PixelLabelData folder
-

Export Labels Ground truth data

e

. gTruth

The PNG files within the PixelLabelData folder are stored as a categorical matrix. The
categorical matrices contain values assigned to categories. Categorical is a data type. A
categorical matrix provides efficient storage and convenient manipulation of nonnumeric data, while
also maintaining meaningful names for the values. These matrices are natural representations for
semantic segmentation ground truth, where each pixel is one of a predefined category of labels.

MAT-file

Location of Pixel Label Data Folder

The ground truth object stores the folder path and name for the pixel label data folder. The
LabelData property of the groundTruth object or ROILabelData property of the
groundTruthMultisignal object contains the information in the 'PixelLabelData' column. If
you change the location of the pixel data file, you must also update the related information in the
ground truth object. You can use the changeFilePaths function to update the information.

View Exported Pixel Label Data

The labeler apps store the semantic segmentation ground truth as lossless PNG files, with a uint8
value representing each category. The app uses the categorical function to associate the uint8
values to a category. To view your pixel data, you can either overlay the categories on images or
create a datastore from the labeled images.

7 Object Detection

7-10

View Exported Pixel Label Data By Overlaying Categories on Images

Use the imread function with the categorical and labeloverlay functions. You cannot view the
pixel data directly from the categorical matrix. See “View Exported Pixel Label Data” on page 7-10.

View Exported Pixel Label Data from Datastore of Labeled Images

Use the pixellLabelDatastore function to create a datastore from a set of labeled images. Use the
read function to read the pixel label data. See “Read and Display Pixel Label Data” on page 7-11.

Examples

View Exported Pixel Label Data

Read image and corresponding pixel label data that was exported from a labeler app.
visiondatadir = fullfile(toolboxdir('vision'), 'visiondata');

buildingImage = imread(fullfile(visiondatadir, 'building', 'buildingl.JPG'));
buildinglLabels = imread(fullfile(visiondatadir, 'buildingPixelLabels"', 'Label 1.png'));

Define categories for each pixel value in buildinglLabels.

labellDs = [1,2,3,4];
labelcats = ["sky" "grass" "building" "sidewalk"];

Construct a categorical matrix using the image and the definitions.
buildinglLabelCats = categorical(buildingLabels, labelIDs, labelcats);
Display the categories overlaid on the image.

figure
imshow(labeloverlay(buildingImage,buildingLabelCats))

How Labeler Apps Store Exported Pixel Labels

Read and Display Pixel Label Data

Overlay pixel label data on an image.

Set the location of the image and pixel label data.

databDir = fullfile(toolboxdir('vision'),'visiondata');

imbir = fullfile(dataDir, 'building"');
pxDir fullfile(dataDir, 'buildingPixelLabels"');

Create an image datastore.

imds = imageDatastore(imDir);

Create a pixel label datastore.

classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 41];

pxds = pixellLabelDatastore(pxDir,classNames,pixellLabellD);

Read the image and pixel label data. read (pxds) returns a categorical matrix, C. The element C(i,j)
in the matrix is the categorical label assigned to the pixel at the location 1(i,j).

7-11

7 Object Detection

I
C

read(imds);
read(pxds) ;

Display the label categories in C.
categories(C{1})

ans = 4x1 cell
{'sky" }
{'grass' }
{'building'}
{'sidewalk'}

Overlay and display the pixel label data onto the image.
B = labeloverlay(I,C{1});

figure
imshow(B)

7-12

How Labeler Apps Store Exported Pixel Labels

See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

Objects
groundTruth | groundTruthMultisignal | pixelLabelImageDatastore

Functions

changeFilePaths (groundTruth) | changeFilePaths (groundTruthMultisignal)

More About

. “Label Pixels for Semantic Segmentation” on page 7-39
. “Share and Store Labeled Ground Truth Data” on page 7-91

7-13

7 Object Detection

Anchor Boxes for Object Detection

7-14

Object detection using deep learning neural networks provide a fast and accurate means to predict
the location and size of an object in an image. Ideally, the network returns valid objects in a timely
matter, regardless of the scale of the objects. The use of anchor boxes improves the speed and
efficiency for the detection portion of a deep learning neural network framework.

What Is an Anchor Box?

Anchor boxes are a set of predefined bounding boxes of a certain height and width. These boxes are
defined to capture the scale and aspect ratio of specific object classes you want to detect and are
typically chosen based on object sizes in your training datasets. During detection, the predefined
anchor boxes are tiled across the image. The network predicts the probability and other attributes,
such as background, intersection over union (IoU) and offsets for every tiled anchor box. The
predictions are used to refine each individual anchor box. You can define several anchor boxes, each
for a different object size. Anchor boxes are fixed initial boundary box guesses.

The network does not directly predict bounding boxes, but rather predicts the probabilities and
refinements that correspond to the tiled anchor boxes. The network returns a unique set of
predictions for every anchor box defined. The final feature map represents object detections for each
class. The use of anchor boxes enables a network to detect multiple objects, objects of different
scales, and overlapping objects.

Anchor box 1 Anchor box 2

Tiled anchor box 1 Tiled anchor beox 2

Advantage of Using Anchor Boxes

When using anchor boxes, you can evaluate all object predictions at once. Anchor boxes eliminate the
need to scan an image with a sliding window that computes a separate prediction at every potential
position. Examples of detectors that use a sliding window are those that are based on aggregate
channel features (ACF) or histogram of gradients (HOG) features. An object detector that uses anchor
boxes can process an entire image at once, making real-time object detection systems possible.

Anchor Boxes for Object Detection

Sliding Window Detector

I
P ‘ iy :;E ==
TR A‘:F,‘ ﬂuluu :
=
s SVM .
Image patches Detect Classify

Because a convolutional neural network (CNN) can process an input image in a convolutional manner,
a spatial location in the input can be related to a spatial location in the output. This convolutional
correspondence means that a CNN can extract image features for an entire image at once. The
extracted features can then be associated back to their location in that image. The use of anchor
boxes replaces and drastically reduces the cost of the sliding window approach for extracting
features from an image. Using anchor boxes, you can design efficient deep learning object detectors
to encompass all three stages (detect, feature encode, and classify) of a sliding-window based object
detector.

How Do Anchor Boxes Work?

The position of an anchor box is determined by mapping the location of the network output back to
the input image. The process is replicated for every network output. The result produces a set of tiled
anchor boxes across the entire image. Each anchor box represents a specific prediction of a class.
Below there two anchor boxes to make two predictions per location.

CNNoutput(ij) maps to Image(i,)

Each anchor box is tiled across the image. The number of network outputs equals the number of tiled
anchor boxes. The network produces predictions for all outputs.

7-15

7 Object Detection

7-16

Localization Errors and Refinement

The distance, or stride, between the tiled anchor boxes is a function of the amount of downsampling
present in the CNN. Downsampling factors between 4 and 16 are common. These downsampling
factors produce coarsely tiled anchor boxes, which can lead to localization errors.

SEEEEEEEEEEEEEEE
Downsa
[] |
S
16
| [|
18 = CNN == . §
8| - “ | Downsa
16 . -
8
4 Downsa

Anchor Boxes for Object Detection

To fix localization errors, deep learning object detectors learn offsets to apply to each tiled anchor
box refining the anchor box position and size.

image origi |

nchor box location

Predicted offset
[|

a
L |
h o == o

Refined location of anchor box

Downsampling can be reduced by removing downsampling layers. To reduce downsampling, lower
the ‘Stride’ property of the convolution or max pooling layers, (such as convolution2dLayer and
convolution2dLayer.) You can also choose a feature extraction layer earlier in the network.
Feature extraction layers from earlier in the network have higher spatial resolution but may extract
less semantic information compared to layers further down the network

Generate Object Detections

To generate the final object detections, tiled anchor boxes that belong to the background class are
removed, and the remaining ones are filtered by their confidence score. Anchor boxes with the
greatest confidence score are selected using nonmaximum suppression (NMS). For more details
about NMS, see the selectStrongestBboxMulticlass function.

7-17

7 Object Detection

7-18

Two anchor boxes Filter by class scores,

] Class: airplane perform non-max suppression
|:| Class: sailboat and intersection over union

Anchor Box Size

Multiscale processing enables the network to detect objects of varying size. To achieve multiscale
detection, you must specify anchor boxes of varying size, such as 64-by-64, 128-by-128, and 256-
by-256. Specify sizes that closely represent the scale and aspect ratio of objects in your training data.
For an example of estimating sizes, see Estimate Anchor Boxes From Training Data.

See Also

Related Examples

. “Create YOLO v2 Object Detection Network”

. “Train Object Detector Using R-CNN Deep Learning”

. “Object Detection Using Faster R-CNN Deep Learning”
. Estimate Anchor Boxes From Training Data

More About

. “Getting Started with YOLO v2” on page 7-19

. “Deep Learning in MATLAB” (Deep Learning Toolbox)

. “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

Getting Started with YOLO v2

Getting Started with YOLO v2

The you-only-look-once (YOLO) v2 object detector uses a single stage object detection network. YOLO
v2 is faster than other two-stage deep learning object detectors, such as regions with convolutional
neural networks (Faster R-CNNs).

The YOLO v2 model runs a deep learning CNN on an input image to produce network predictions.
The object detector decodes the predictions and generates bounding boxes.

Feature Map
Predictions

Decode |
Predictions

Predicting Objects in the Image

YOLO v2 uses anchor boxes to detect classes of objects in an image. For more details, see “Anchor
Boxes for Object Detection” on page 7-14.The YOLO v2 predicts these three attributes for each
anchor box:

* Intersection over union (IoU) — Predicts the objectness score of each anchor box.

* Anchor box offsets — Refine the anchor box position

* C(Class probability — Predicts the class label assigned to each anchor box.

The figure shows predefined anchor boxes (the dotted lines) at each location in a feature map and the
refined location after offsets are applied. Matched boxes with a class are in color.

Predefined anchor box location

' | == ‘
s 11 | i
R A P -
:'I'I'"" o1 d=I. 1 1 | | |
1 11 1 1 || .
CESr=S, T NPF sl Predicted offset
N - LD L I I
Lr-pral ::": il .
i s E om == o
b |

Refined location of anchor box

Ground truth image and Anchor boxes at each predefined |
hounding boxes location in each feature map

7-19

7 Object Detection

Transfer Learning

With transfer learning, you can use a pretrained CNN as the feature extractor in a YOLO v2 detection
network. Use the yolov2Layers function to create a YOLO v2 detection network from any
pretrained CNN, for example MobileNet v2. For a list of pretrained CNNs, see “Pretrained Deep
Neural Networks” (Deep Learning Toolbox)

You can also design a custom model based on a pretrained image classification CNN. For more
details, see “Design a YOLO v2 Detection Network” on page 7-20.

Design a YOLO v2 Detection Network

You can design a custom YOLO v2 model layer by layer. The model starts with a feature extractor
network, which can be initialized from a pretrained CNN or trained from scratch. The detection
subnetwork contains a series of Conv, Batch norm, and RelLu layers, followed by the transform and
output layers, yolov2TransformLayer and yolov20utputLayer objects, respectively.
yolov2TransformLayer transforms the raw CNN output into a form required to produce object
detections. yolov20utputLayer defines the anchor box parameters and implements the loss
function used to train the detector.

fo
nlﬂz ﬂgnl
o-0-0-0-0-0 - o—0—@
xN
Conv Batch ReLu Conv
norm

You can also use the Deep Network Designer app to manually create a network. The designer
incorporates Computer Vision Toolbox YOLO v2 features.

Design a YOLO v2 Detection Network with a Reorg Layer

The reorganization layer (created using the yolov2ReorglLayer object) and the depth concatenation
layer (created using the depthConcatenationLayer object) are used to combine low-level and
high-level features. These layers improve detection by adding low-level image information and
improving detection accuracy for smaller objects. Typically, the reorganization layer is attached to a
layer within the feature extraction network whose output feature map is larger than the feature
extraction layer output.

Tip
* Adjust the 'Stride' property of the yolov2ReorglLayer object such that its output size matches
the input size of the depthConcatenationLayer object.

* To simplify designing a network, use the interactive Deep Network Designer app and the
analyzeNetwork function.

7-20

Getting Started with YOLO v2

Layer
penatio® fo
d.yﬂlcﬂ“cn Inln‘ﬂ’zﬂ
(o o P oo
xN
Conv Batch Relu Conv
norm
yolovZReorgLlayer

For more details on how to create this kind of network, see “Create YOLO v2 Object Detection
Network”.

Train an Object Detector and Detect Objects with a YOLO v2 Model

To learn how to train an object detector by using the YOLO deep learning technique with a CNN, see
the “Object Detection Using YOLO v2 Deep Learning” example.

Code Generation

To learn how to generate CUDA code using the YOLO v2 object detector (created using the
yolov20bjectDetector object) see “Code Generation for Object Detection by Using YOLO v2”.

Label Training Data for Deep Learning

You can use the Image Labeler, Video Labeler, or Ground Truth Labeler (available in Automated
Driving Toolbox) apps to interactively label pixels and export label data for training. The apps can
also be used to label rectangular regions of interest (ROIs) for object detection, scene labels for
image classification, and pixels for semantic segmentation.

7-21

7 Object Detection

7-22

References

[1] Redmon, J. and A. Farhadi. "YOLO9000: Better, Faster, Stronger." IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 6517-6525. Honolulu, HI: CVPR 2017.

[2] Redmon, J., S. Divvala, R. Girshick, and A. Farhadi. "You only look once: Unified, real-time object
detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 779-788. Las Vegas, NV: CVPR, 2016.

See Also

Apps
Deep Network Designer | Ground Truth Labeler | Image Labeler | Video Labeler

Objects
depthConcatenationLayer | yolov20bjectDetector | yolov20utputLayer |
yolov2ReorgLayer | yolov2TransformLayer

Functions
analyzeNetwork | trainYOLOv20bjectDetector

Related Examples

. “Train Object Detector Using R-CNN Deep Learning”

. “Object Detection Using YOLO v2 Deep Learning”

. “Code Generation for Object Detection by Using YOLO v2”

More About

. “Anchor Boxes for Object Detection” on page 7-14

. “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN” on page 7-23
. “Deep Learning in MATLAB” (Deep Learning Toolbox)

. “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN

Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN

Object detection is the process of finding and classifying objects in an image. One deep learning
approach, regions with convolutional neural networks (R-CNN), combines rectangular region
proposals with convolutional neural network features. R-CNN is a two-stage detection algorithm. The
first stage identifies a subset of regions in an image that might contain an object. The second stage
classifies the object in each region.

Applications for R-CNN object detectors include:

* Autonomous driving

* Smart surveillance systems

* Facial recognition

Computer Vision Toolbox provides object detectors for the R-CNN, Fast R-CNN, and Faster R-CNN
algorithms.

Object Detection Using R-CNN Algorithms

Models for object detection using regions with CNNs are based on the following three processes:

* Find regions in the image that might contain an object. These regions are called region proposals.
* Extract CNN features from the region proposals.
* Classify the objects using the extracted features.

There are three variants of an R-CNN. Each variant attempts to optimize, speed up, or enhance the
results of one or more of these processes.

R-CNN

The R-CNN detector [2] first generates region proposals using an algorithm such as Edge Boxes[1].
The proposal regions are cropped out of the image and resized. Then, the CNN classifies the cropped
and resized regions. Finally, the region proposal bounding boxes are refined by a support vector
machine (SVM) that is trained using CNN features.

Use the trainRCNNObjectDetector function to train an R-CNN object detector. The function
returns an rcnnObjectDetector object that detects objects in an image.

ol Classification

e, I |
Resized patches J_u
CNN

“‘\.?k] |
00 Wy ——
oo © et
=
SVM Bounding box

refinement layer

7-23

7 Object Detection

Fast R-CNN

As in the R-CNN detector , the Fast R-CNN[3] detector also uses an algorithm like Edge Boxes to
generate region proposals. Unlike the R-CNN detector, which crops and resizes region proposals, the
Fast R-CNN detector processes the entire image. Whereas an R-CNN detector must classify each
region, Fast R-CNN pools CNN features corresponding to each region proposal. Fast R-CNN is more
efficient than R-CNN, because in the Fast R-CNN detector, the computations for overlapping regions
are shared.

Use the trainFastRCNNObjectDetector function to train a Fast R-CNN object detector. The
function returns a fastRCNNObjectDetector that detects objects from an image.

Classification

Features
- //
// ..r ﬁ ROl pool et

' e -

y ; CNN O Classification e S r———
¥ ‘ : Layers |§x T

‘ ROIs o
Region proposal function F -
Bounding box
Feature Extractor Object Classification refinement layer

7-24

Faster R-CNN

The Faster R-CNN[4] detector adds a region proposal network (RPN) to generate region proposals
directly in the network instead of using an external algorithm like Edge Boxes. The RPN uses “Anchor
Boxes for Object Detection” on page 7-14. Generating region proposals in the network is faster and
better tuned to your data.

Use the trainFasterRCNNObjectDetector function to train a Faster R-CNN object detector. The
function returns a fasterRCNNObjectDetector that detects objects from an image.

Classification
e Features

‘ ROI pool
ﬁ - -
O Classification
Layers
Bounding box
Region proposal network (RPN) refinement layer

Feature Extractor Object Classification

Comparison of R-CNN Object Detectors

This family of object detectors uses region proposals to detect objects within images. The number of
proposed regions dictates the time it takes to detect objects in an image. The Fast R-CNN and Faster
R-CNN detectors are designed to improve detection performance with a large number of regions.

Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN

R-CNN Detector Description

trainRCNNObjectDetector * Slow training and detection
* Allows custom region proposal

trainFastRCNNObjectDetector

trainFasterRCNNObjectDetecto
-

Allows custom region proposal

Optimal run-time performance
* Does not support a custom region proposal

Transfer Learning

You can use a pretrained convolution neural network (CNN) as the basis for an R-CNN detector, also
referred to as transfer learning. See “Pretrained Deep Neural Networks” (Deep Learning Toolbox).
Use one of the following networks with the trainRCNNObjectDetector,
trainFasterRCNNObjectDetector, or trainFastRCNNObjectDetector functions. To use any of
these networks you must install the corresponding Deep Learning Toolbox™ model:

* 'alexnet!
* 'vgglo'
* 'vggl9'

* 'resnet50'

* 'resnetlol’

* ‘'inceptionv3'

* 'googlenet’

* 'inceptionresnetv2'

* 'squeezenet’

You can also design a custom model based on a pretrained image classification CNN. See the “Design

an R-CNN, Fast R-CNN, and a Faster R-CNN Model” on page 7-25 section and the Deep Network
Designer app.

Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model

You can design custom R-CNN models based on a pretrained image classification CNN. You can also
use the Deep Network Designer to build, visualize, and edit a deep learning network.

1 The basic R-CNN model starts with a pretrained network. The last three classification layers are
replaced with new layers that are specific to the object classes you want to detect.

For an example of how to create an R-CNN object detection network, see “Create R-CNN Object
Detection Network”

7-25

7 Object Detection

Classification layers

Features specific to data set

2 The Fast R-CNN model builds on the basic R-CNN model. A box regression layer is added to
improve on the position of the object in the image by learning a set of box offsets. An ROI pooling
layer is inserted into the network to pool CNN features for each region proposal.

For an example of how to create a Fast R-CNN object detection network, see “Create Fast R-CNN

Object Detection Network”
i ;

roilnputLayer fullyConnectedLayer

.) rcnnBoxRegressionlLayer

roiMaxPooling2dLayer

feature extraction layer

3 The Faster R-CNN model builds on the Fast R-CNN model. A region proposal network is added to
produce the region proposals instead of getting the proposals from an external algorithm.

For an example of how to create a Faster R-CNN object detection network, see “Create Faster R-
CNN Object Detection Network”

7-26

Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN

feature extraction layer roiMaxPooling2dLayer

[2 2 am @

rcnnBoxRegressionLayer

A J

.regionProposal Layer

/

-
-

rpnSoftmaxLayer rpnClassifierLayer

Convolution Layers

Label Training Data for Deep Learning

You can use the Image Labeler, Video Labeler, or Ground Truth Labeler (available in Automated
Driving Toolbox) apps to interactively label pixels and export label data for training. The apps can
also be used to label rectangular regions of interest (ROIs) for object detection, scene labels for
image classification, and pixels for semantic segmentation.

it o e e it i 2

References

[1] Zitnick, C. Lawrence, and P. Dollar. "Edge boxes: Locating object proposals from edges." Computer
Vision-ECCV. Springer International Publishing. Pages 391-4050. 2014.

[2] Girshick, R.,]J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation." CVPR '14 Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition. Pages 580-587. 2014

[3] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer
Vision. 2015

[4] Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks." Advances in Neural Information
Processing Systems . Vol. 28, 2015.

7-27

7 Object Detection

See Also

Apps
Deep Network Designer | Ground Truth Labeler | Image Labeler | Video Labeler

Functions
fastRCNNObjectDetector | fasterRCNNObjectDetector | rcnnObjectDetector |
trainFastRCNNObjectDetector | trainFasterRCNNObjectDetector |
trainRCNNObjectDetector

Related Examples
. “Train Object Detector Using R-CNN Deep Learning”
. “Object Detection Using Faster R-CNN Deep Learning”

More About

. “Anchor Boxes for Object Detection” on page 7-14
. “Deep Learning in MATLAB” (Deep Learning Toolbox)
. “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

7-28

Getting Started with Semantic Segmentation Using Deep Learning

Getting Started with Semantic Segmentation Using Deep
Learning

Segmentation is essential for image analysis tasks. Semantic segmentation describes the process of
associating each pixel of an image with a class label, (such as flower, person, road, sky, ocean, or
car).

Input Matwork Output

Applications for semantic segmentation include:

* Autonomous driving

* Industrial inspection

» Classification of terrain visible in satellite imagery

* Medical imaging analysis

Train a Semantic Segmentation Network

The steps for training a semantic segmentation network are as follows:
1. “Analyze Training Data for Semantic Segmentation”

2. “Create a Semantic Segmentation Network”

3. “Train A Semantic Segmentation Network”

4. “Evaluate and Inspect the Results of Semantic Segmentation”

Label Training Data for Semantic Segmentation

Large datasets enable faster and more accurate mapping to a particular input (or input aspect).
Using data augmentation provides a means of leveraging limited datasets for training. Minor
changes, such as translation, cropping, or transforming an image provides new distinct and unique
images. See “Augment Images for Deep Learning Workflows Using Image Processing Toolbox” (Deep
Learning Toolbox)

7-29

7 Object Detection

You can use the Image Labeler app to interactively label pixels and export the label data for
training. The app can also be used to label rectangular regions of interest (ROIs) and scene labels for
image classification.

0

See Also

Apps
Image Labeler

Functions
evaluateSemanticSegmentation | fcnLayers | pixelLabelDatastore | segnetLayers |
semanticSegmentationMetrics | semanticseg | unet3dLayers | unetlLayers

Objects
pixelClassificationLayer | pixellLabelImageDatastore

See Also

Related Examples

. “Augment Pixel Labels for Semantic Segmentation” (Deep Learning Toolbox)
. “Import Pixel Labeled Dataset For Semantic Segmentation”

. “Semantic Segmentation Using Deep Learning”

. “Label Pixels for Semantic Segmentation” on page 7-39

. “Define Custom Pixel Classification Layer with Tversky Loss” on page 1-59

. “Semantic Segmentation Using Dilated Convolutions” on page 1-55

More About

. “Deep Learning in MATLAB” (Deep Learning Toolbox)

7-30

Training Data for Object Detection and Semantic Segmentation

Training Data for Object Detection and Semantic Segmentation

You can use a labeling app and Computer Vision Toolbox objects and functions to train algorithms
from ground truth data. Use the labeling app to interactively label ground truth data in a video,
image sequence, image collection, or custom data source. Then, use the labeled data to create
training data to train an object detector or to train a semantic segmentation network.

This workflow applies to the Image Labeler and Video Labeler apps only. To create training data for
the Ground Truth Labeler app in Automated Driving Toolbox, use the gatherLabelData function.

7-31

7 Object Detection

Labeler Apps |
Gt
% | %J'mmdﬁ'mh object | @

Custom Labeled Data

Pixel label data

[objectDetectorTrainingData] [pixellabelTrainingData
i_'] Image datastore [imds] “_'] Image datastore [imd.
i']EE'I label datastore [blds) ‘--] Pixel label datastore [}

[combine (imds, blds)] [combine (imds, pxds)

_ Datastore [imds,blds] _ Datastore [imds, px
N T
=y ‘ .'_f"__:-ﬁ:“i’fj’
Train an object detector Train a semantic segmentation nei

trainFastRCHNObjectDetector trainNetwork
trainFasterRCHNObjectDetector

trainYOLOvZObjectDetector

trainS5D0bjectDetector

7-32

Training Data for Object Detection and Semantic Segmentation

Load data for labeling

* Image Labeler — Load an image collection from a file or ImageDatastore object into the
app.
* Video Labeler — Load a video, image sequence, or a custom data source into the app.

Label data and select an automation algorithm: Create ROI and scene labels within the app.
For more details, see:

* Image Labeler — “Get Started with the Image Labeler” on page 7-49
* Video Labeler — “Get Started with the Video Labeler” on page 7-64

You can choose from one of the built-in algorithms or create your own custom algorithm to label
objects in your data. To learn how to create your own automation algorithm, see “Create
Automation Algorithm for Labeling” on page 7-35.

Export labels: After labeling your data, you can export the labels to the workspace or save them
to a file. The labels are exported as a groundTruth object. If your data source consists of
multiple image collections, label the entire set of image collections to obtain an array of
groundTruth objects. For details about sharing groundTruth objects, see “Share and Store
Labeled Ground Truth Data” on page 7-91.

Create training data: To create training data from the groundTruth object, use one of these
functions:

* Training data for object detectors — Use the objectDetectorTrainingData function.

* Training data for semantic segmentation networks — Use the pixelLabelTrainingData
function.

For objects created using a video file or custom data source, the
objectDetectorTrainingData and pixelLabelTrainingData functions write images to
disk for groundTruth. Sample the ground truth data by specifying a sampling factor. Sampling
mitigates overtraining an object detector on similar samples.

Train algorithm:

* Object detectors — Use one of several Computer Vision Toolbox object detectors. For a list of
detectors, see “Object Detection Using Features” and “Object Detection using Deep
Learning”. For object detectors specific to automated driving, see the Automated Driving
Toolbox object detectors listed in “Visual Perception” (Automated Driving Toolbox).

* Semantic segmentation network — For details on training a semantic segmentation network,
see “Getting Started with Semantic Segmentation Using Deep Learning” on page 7-29.

See Also

Apps
Image Labeler | Video Labeler

Functions

objectDetectorTrainingData | pixelLabelTrainingData | semanticseq |
trainACFObjectDetector | trainFasterRCNNObjectDetector | trainRCNNObjectDetector
| trainRCNNObjectDetector | trainSSDObjectDetector | trainYOLOv20bjectDetector

Objects
groundTruth | groundTruthDataSource

7-33

7 Object Detection

7-34

More About

“Get Started with the Image Labeler” on page 7-49

“Get Started with the Video Labeler” on page 7-64

“Create Automation Algorithm for Labeling” on page 7-35

“Getting Started with Object Detection Using Deep Learning” on page 7-6
“Getting Started with Semantic Segmentation Using Deep Learning” on page 7-29
“Getting Started with Point Clouds Using Deep Learning” on page 2-2

“Anchor Boxes for Object Detection” on page 7-14

Create Automation Algorithm for Labeling

Create Automation Algorithm for Labeling

The Image Labeler, Video Labeler, and Ground Truth Labeler (requires Automated Driving
Toolbox) apps enable you to label ground truth for a variety of data sources. You can use an
automation algorithm to automatically label your data by creating and importing a custom
automation algorithm.

Create New Algorithm

The vision.labeler.AutomationAlgorithm class enables you to define a custom label
automation algorithm for use in the labeling apps. You can use the class to define the interface used
by the app to run an automation algorithm.

To define and use a custom automation algorithm, you must first define a class for your algorithm and
save it to the appropriate folder.

Create Automation Folder

Create a +vision/+labeler/ folder within a folder that is on the MATLAB path. For example, if the
folder /local/MyProject is on the MATLAB path, then create the +vision/+labeler/ folder
hierarchy as follows:

projectFolder = fullfile('local', 'MyProject');
automationFolder = fullfile('+vision', '+labeler');
mkdir(projectFolder,automationFolder)

The resulting folder is located at /local/MyProject/+vision/+labeler.
Define Class That Inherits from AutomationAlgorithm Class

At the MATLAB command prompt, enter the appropriate command to open the labeling app:

* 1imagelLabeler
* videolLabeler
* groundTruthLabeler

Then, load a data source, create at least one label definition, and on the app toolstrip, select Select
Algorithm > Add Algorithm > Create New Algorithm . In the
vision.labeler.AutomationAlgorithm class template that opens, define your custom
automation algorithm. Follow the instructions in the header and comments in the class.

If the algorithm is time-dependent, that is, has a dependence on the timestamp of execution, your
custom automation algorithm must also inherit from the vision.labeler.mixin.Temporal class.
For more details on implement time-dependent, or temporal, algorithms, see “Temporal Automation
Algorithms” on page 7-85.

Save Class File to Automation Folder
To use your custom algorithm from within the labeling app, save the file to the +vision/+labeler

folder that you created. Make sure that this folder is on the MATLAB search path. To add a folder to
the path, use the addpath function.

7-35

7 Object Detection

7-36

Refresh Algorithm List in Labeling App

To start using your custom algorithm, refresh the algorithm list so that the algorithm displays in the
labeling app. On the app toolstrip, select Select Algorithm Refresh list.

Import Existing Algorithm

To import an existing custom algorithm into a labeling app, on the app toolstrip, select Select
Algorithm > Add Algorithm > Import Algorithm and then refresh the list.

Custom Algorithm Execution

When you run an automation session in a labeling app, the properties and methods in your
automation algorithm class control the behavior of the app.

Check Label Definitions

When you click Automate, the app checks each label definition in the ROI Labels and Scene Labels
panes by using the checkLabelDefinition method defined in your custom algorithm. Label
definitions that return true are retained for automation. Label definitions that return false are
disabled and not included. Use this method to choose a subset of label definitions that are valid for
your custom algorithm. For example, if your custom algorithm is a semantic segmentation algorithm,
use this method to return false for label definitions that are not of type PixelLabel.

| ROILsbels | | RoiLsbes |
By B = [B =9 C ‘
F =] Sublabel Admibvehe
F Vohicla OG5 ¥ Wehich 1058
F Ropad < I] <P
b Bridge 108 | » Bridge 108
k Sky o | £7
B Trees | » &
I% checkLabellefinition() /

Automate ﬁ

Control Settings

After you select the algorithm, click Automate to start an automation session. Then, click Settings,
which enables you to modify custom app settings. To control the Settings options, use the
settingsDialog method.

Create Automation Algorithm for Labeling

& e
Satiings ﬂ settingsDialog()

Control Algorithm Execution

When you open an automation algorithm session in the app and then click Run, the app calls the
checkSetup method to check if it is ready for execution. If the method returns false, the app does
not execute the automation algorithm. If the method returns true, the app calls the initialize
method and then the run method on every frame selected for automation. Then, at the end of the
automation run, the app calls the terminate method.

The diagram shows this flow of execution for the labeling apps.

>

exit
e
execute algorithm

initialize

run Each frame

Labels drawn automatically
in frame display

terminate

* Use the checkSetup method to check whether all conditions needed for your custom algorithm
are set up correctly. For example, before running the algorithm, check that the scene contains at
least one ROI label.

* Usethe initialize method to initialize the state for your custom algorithm by using the frame.

e Use the run method to implement the core of the algorithm that computes and returns labels for
each frame.

* Use the terminate method to clean up or terminate the state of the automation algorithm after
the algorithm runs.

See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

7-37

7 Object Detection

7-38

Functions
vision.labeler.AutomationAlgorithm | vision.labeler.mixin.Temporal

Related Examples

. “Automate Ground Truth Labeling of Lane Boundaries” (Automated Driving Toolbox)

. “Automate Ground Truth Labeling for Semantic Segmentation” (Automated Driving Toolbox)
. “Automate Attributes of Labeled Objects” (Automated Driving Toolbox)

More About

. “Get Started with the Image Labeler” on page 7-49

. “Get Started with the Video Labeler” on page 7-64

. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “Temporal Automation Algorithms” on page 7-85

Label Pixels for Semantic Segmentation

Label Pixels for Semantic Segmentation

The Image Labeler, Video Labeler, and Ground Truth Labeler (requires Automated Driving
Toolbox) apps enable you to assign pixel labels manually. Each pixel can have at most one pixel label.
The labels are used to create ground truth data for training semantic segmentation algorithms.

Start Pixel Labeling

Begin by loading an image, video, or image sequence into a labeling app and defining pixel ROI
labels. For more details, see:

* Image Labeler — “Get Started with the Image Labeler” on page 7-49

* Video Labeler — “Get Started with the Video Labeler” on page 7-64

* Ground Truth Labeler — “Get Started with the Ground Truth Labeler” (Automated Driving
Toolbox)

This example shows pixel labeling with the Image Labeler. You use the same tools to label videos
and image sequences with the Video Labeler or Ground Truth Labeler.

Select a pixel label definition from the ROI Label Definition pane. A Label Pixels tab opens,
containing tools to label pixels manually using polygons, brushes, or flood fill. You can use the
labeling tools in any order. This tab also has controls to adjust the display of the image by zooming
and panning and to adjust the opacity of the labels.

This example uses two general strategies to label pixels in the highway image:

» First use the semi-automated tools, such as Flood Fill and Smart Polygon. Then, refine the
labels using tools that offer more direct control, such as Polygon, Assisted Freehand and
Brush.

» First label distant objects with a rough estimation of ohject borders. Then, label nearer objects
with more precise object borders.

7-39

7 Object Detection

i et Lab-cio

ROH Label Definigacn
.
:
[=
Corlog New G0 Laked

ez ly

L a

b 1oad 1=
b vegetatssn i<
b Struciures |] '_'E

i | ‘
';-c-rwl.lt.-ﬂl)v'-'ﬂ-w

o Bedne new ioese ke

o

Label Pixels Using Flood Fill Tool

The Flood Fill tool labels a group of connected pixels that have a similar color. In this image, the sky
is a good candidate for flood fill because the boundary of the bright sky is clear against the dark
vegetation and overpass. In contrast, flood fill cannot isolate the vegetation because the color of the
vegetation is too similar to the adjacent barriers, roads, and vehicles.

To label pixels using Flood Fill:

Select the tool and a label. The pointer changes to a paint can &,
2 Click a starting pixel in the image.

7-40

Label Pixels for Semantic Segmentation

You can undo the flood fill, or any other labeling operation, by pressing Ctrl+Z.

Label Pixels Using Smart Polygon Tool

The Smart Polygon tool estimates the shape of an object of interest within a polygon that you draw.
The tool is useful when the shape of the object is not a simple polygon. This example uses Smart
Polygon to label the vegetation, which has a complicated boundary with the sky.

To label pixels using Smart Polygon:

1 Select the tool and a label. The pointer changes to a crosshair +.

2 Click to add polygon vertices. Completely surround the object of interest, with some space
between the object and the polygon.

3 Close the polygon by clicking the first vertex after placing the other vertices. Alternatively, you
can double-click to add the last vertex and close the polygon in one step.
After you close the polygon, the tool draws an initial label.

4 Adjust the shape and position of the polygon. When the object of interest extends to the edge of
the image, drag vertices to the edge of the image to ensure that the smart polygon completely
encloses the object. For instance, this example shows the two leftmost vertices placed at the left
edge of the image.

7-41

7 Object Detection

Smart Polygon Actions

Goal Control
Move vertex Click and drag the vertex.
Add vertex * Right-click the polygon boundary at the position of the new

vertex, and select Add Point.
* Double-click the point on the boundary.

Delete vertex Right-click the vertex and select Delete Vertex.

Move polygon Click and drag any point on the polygon boundary (excluding
vertices).

Delete polygon Right-click the polygon boundary and select Delete Polygon.

5 Use the Smart Polygon Editor tools to refine the label.

* Select Mark Foreground to mark areas inside the region that you want to label. Foreground
marks appear in green.

* Select Mark Background to mark areas inside the region that you do not want to label.
Background marks appear in red.

7-42

Label Pixels for Semantic Segmentation

* Select Erase Marks to remove foreground or background marks that are no longer needed.

* See Tips on page 7-47 for additional suggestions on using the Smart Polygon tool.

6 To finalize the label, press Enter or select a new ROI Label Definition. You can no longer edit
the polygon vertices or mark foreground and background regions.

Label Pixels Using Polygon Tool

The Polygon tool labels all pixels within a polygon that you draw. The controls for defining and
adjusting the vertices of a polygon are similar to the controls of the Smart Polygon tool.

Add additional polygons over structures such as barriers and the road. Many vehicle pixels are
incorrectly labeled. The next step shows how to replace the erroneous labels with the correct label.

7-43

7 Object Detection

Label Pixels Using Assisted Freehand Tool

The Assisted Freehand tool enables you to draw an ROI that automatically follows the edge of the
subject in the underlying image. You can also adjust the size and position of the ROI by using your

mouse.

7-44

Label Pixels for Semantic Segmentation

Replace Pixel Labels

Each pixel can have at most one pixel label. When you apply a label to a pixel, the new label replaces
the previous label.

This example uses the Smart Polygon tool to label pixels belonging to the truck. Foreground marks
assign the vehicle label to subregions. Background marks revert subregions to their prior label. For
instance, in the first pair of images, background marks revert subregions to the sky and vegetation
labels. Similarly, in the second pair of images, background marks revert subregions to the road label.

The border of the truck is jagged because Smart Polygon labels entire subregions, not individual
pixels. The next step shows how to refine the labels along the border of the truck.

Refine Labels Using Brush Tool

The Brush tool labels pixels when you draw over the image with the mouse. This example uses
Brush to remove spurs from the road and to make the edges of the truck smoother.

7-45

7 Object Detection

To label pixels using Brush:

1 Select the tool and a label. The pointer changes to a pen & , and a square appears to indicate the

size of the brush.

Adjust the size of the brush by using the Brush Size slider.
Click and drag the mouse to label pixels.

The Erase tool removes pixel labels when you draw over the image with the mouse.

Visualize Pixel Labels

You can modify the view of the image to facilitate pixel labeling. The Zoom In, Zoom Out, and Pan

options enable you to zoom and pan the image with the mouse. To resume pixel labeling, click the
Label icon.

The Label Opacity slider adjusts the opacity of all pixel labels.
» Decrease the opacity to see the image more clearly. For instance, decrease the opacity to make it

easier to find the border between the bottom of the car and the road.

* Increase the opacity to see the segmentation more clearly. For instance, increase the opacity to
see that edge along the front bumper of the car should be smoothed. Also, observe that the barrier
and some distant vehicles have unlabeled pixels.

This is the final pixel-labeled image.

7-46

Label Pixels for Semantic Segmentation

LABEL PIELS o W T ‘Uﬁﬁ

-y, Tonm Oul 5 o7 ;

e y

? ¥ el GewtPugen Ansadel Bresn Doeee ————gr——— Foelfl oy

o, | Pekmen i Fressasd

o POLTPOM (DT e OG0 T WAL DRALTTT z
P8 Lol Dinfirutagen [T ———
= R
b resd |
¥ while 1<
b e 3
[T | 2
b b 1o
by | -
L Bi:

S vkt Gt

3 Datea e sont tel

Apey i Page
By B e
¥ Sy |
[1
Tsarvel]
|
|
|
|
L
Tips

* The Smart Polygon tool identifies an object of interest by using regional graph-based
segmentation ("GrabCut") [1]. The Smart Polygon tool divides the image into subregions. The
tool treats all subregions that are fully or partially outside the polygon as belonging to the
background. Therefore, to get an optimal segmentation, make sure the object to be labeled is fully
contained within the polygon, surrounded by a few background pixels.

All pixels within a subregion have the same label. Marking pixels outside the polygon has no effect
on the label.

* To delete the most recently labeled ROI, press Ctrl+Z.

* Each pixel can have at most one pixel label. When you apply a label to a pixel, the new label
replaces the previous label.

+ Pixel labeling is disabled when you pan and zoom the image. You must click the Label button to
resume pixel labeling.

* To ensure that all pixels in an image are labeled, begin by labeling the entire image with a single
label. Pick a label that represents a predominant ROI in the image, such as sky, road, or
background. Then, use the labeling tools to relabel objects with their correct label.

» To fill all or all remaining pixels, select an ROI label from your list and press Shift+Click (you can
use left- or right-click).

References
[1] Rother, C., V. Kolmogorov, and A. Blake. "GrabCut - Interactive Foreground Extraction using

Iterated Graph Cuts". ACM Transactions on Graphics (SIGGRAPH). Vol. 23, Number 3, 2004,
pp. 309-314.

7-47

7 Object Detection

7-48

See Also
Ground Truth Labeler | Image Labeler | Video Labeler

More About

. “Get Started with the Image Labeler” on page 7-49

. “Get Started with the Video Labeler” on page 7-64

. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “How Labeler Apps Store Exported Pixel Labels” on page 7-9

Get Started with the Image Labeler

Get Started with the Image Labeler

The Image Labeler app provides an easy way to mark rectangular region of interest (ROI) labels,
polyline ROI labels, pixel ROI labels, and scene labels in a video or image sequence. This example
gets you started using the app by showing you how to:

* Manually label an image frame from an image collection.

* Automatically label across image frames using an automation algorithm.

» Export the labeled ground truth data.

ROI and Scene Label Definitions

* An ROI label corresponds to either a rectangular, polyline, or pixel region of interest. These labels
contain two components: the label name, such as "cars," and the region you create.

* A Scene label describes the nature of a scene, such as "sunny." You can associate this label with a
frame.

Load Unlabeled Data

Open the app and load a collection of images. You can load images stored in a datastore, from a
folder, or load a previous labeler session. The images must be readable by imread.

imageFolder = fullfile(toolboxdir('vision'),'visiondata', 'stopSignImages')
imds = imageDatastore(imageFolder)
imageLabeler(imds)

imageFolder = fullfile(toolboxdir('vision'),'visiondata', 'stopSignImages')
imagelLabeler(imageFolder)

Alternatively, open the app from the Apps tab, under Image Processing and Computer Vision.
Then, from the Load menu, load an images data source.

4\ Image Labeler = =] x
[o Csesecsie L o =06
A | H i B Detauit Layout - Algorithm,
New Load Save import Show ROI Labeis Select Algorithm ¥ Automate Viewlsbel Export
Session ¥ v labels~ |OnHover ¥ Summary Labels~
FILE VIEW AUTOMATE LABELING SUMMARY EXPORT =
=1 | ROILabels imaged
Label

b

Create Label Definitions

Define the labels you intend to draw. In this example, you define labels directly within the app. To
define labels from the MATLAB command line instead, use the labelDefinitionCreator.

7-49

7 Object Detection

7-50

Create ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI). You can define these types of

ROI labels.
ROI Label Description Example: Driving Scene
Rectangle Draw rectangular ROI labels Vehicles, pedestrians, road signs
(bounding boxes) around
objects.
Line Draw linear ROI labels to Lane boundaries, guard rails,

represent lines. To draw a
polyline ROI, use two or more
points.

road curbs

Pixel label

Assign labels to pixels for
semantic segmentation. You can
label pixels manually using
polygons, brushes, or flood fill.
For more on pixel labeling, see
“Label Pixels for Semantic
Segmentation” on page 7-39.

Vehicles, road surface, trees,
pavement

In this example, you define a vehicle group for labeling types of vehicles, and then create a

Rectangle ROI label for a Car and a Truck. Optionally, you can use the Show ROI Labels drop-
down menu to select On Hover, Always, or Never to control how the ROI label names appear during
labeling. By default, the names will appear when you hover on an ROI.

Get Started with the Image Labeler

In the ROI Labels pane on the left, click Label.
Create a Rectangle label named Car.
Optionally, change the label color by clicking the preview color.

Label Name Color

|Car | |Rectangle » | |

From the Group drop-down menu, select New Group and name the group Vehicle
5 Click OK.

The Vehicle group name appears in the ROI Labels pane with the label Car created. You can
move a label in the list to a different position or group in the list by left-clicking and dragging the
label up or down.

6 Add a second label. Click Label. Name the label Truck and make sure the Vehicle group is
selected. Click OK.

7 Use the mouse to draw rectangular Car ROIs around the two vehicles.

|_| ROl Labels | Scene Labels | j image4 |
B B |3

Label Sublabel Attribute

- \ehicle

.l' Car 1O
F Truck O

Create Sublabels

A sublabel is a type of ROI label that corresponds to a parent ROI label. Each sublabel must belong
to, or be a child of, a specific label defined in the ROI Labels pane. For example, in a driving scene, a
vehicle label might have sublabels for headlights, license plates, or wheels.

Define a sublabel for headlights.

In the ROI Labels pane on the left, click the Car label.
Click Sublabel.
3 Create a Rectangle sublabel named headlight and optionally write a description. Click OK.

The headlight sublabel appears in the ROI Labels pane. The sublabel is nested under the
selected ROI label, Car, and has the same color as its parent label.

7-51

7 Object Detection

You can add multiple sublabels under a label. You can also drag-and-drop the sublabels to reorder
them in the list. Right-click any label for additional edits.

_|J ROI Labels | Scene Labels |
S 238 =
Label Sublabel Attribute
- Vehicle
F Car IO

b headlight IO
F Truck O

4 In the ROI Labels pane, select the headlight sublabel.

5 Inthe image frame, select the Car label. The label turns yellow when selected. You must select
the Car label (parent ROI) before you can add a sublabel to it.

Draw headlight sublabels for each of the cars.

6 Repeat the previous steps to label the headlights of the other car. To draw the labels more
precisely, use the pan and zoom options located in the upper-right corner of the labeling window.

Sublabels can only be used with rectangular or polyline ROI labels and cannot have their own
sublabels. For more details on working with sublabels, see “Use Sublabels and Attributes to Label
Ground Truth Data” on page 7-81.

Create Attributes
An attribute provides further categorization of an ROI label or sublabel. Attributes specify additional
information about a drawable label. For example, in a driving scene, attributes might include the type

or color of a vehicle.

You can define these types of attributes.

7-52

Get Started with the Image Labeler

Attribute Type Sample Attribute Definition |Sample Default Values
Numeric Value]
Attribute Name
numboors My
Default Scalar Value (Optional)
4
St ring Attribute Name
color String
Default Value (Optional) d Sublabels
: | Car
Logical Aftribute Mame
inMotion Logicgl w
Default Value (Optional) -
Missan
True w
et [T inMotion True »
Adttribute Name
carType List e Blue
List tems (Each tem must appear on anew line)
Sedan ~ 4
Hatchback
VWagon Sedan w
o Sedan
Wagon

Add an attribute for the vehicle type.

In the ROI Labels pane on the left, select the Car label and click Attribute.
In the Attribute Name box, type carType. Set the attribute type to List.

In the List Items section, type different types of cars, such as Sedan, Hatchback, and Wagon,
each on its own line. Optionally give the attribute a description, and click OK.

4 In the first frame of the video, select a Car ROI label. In the Attributes and Sublabels pane,
select the appropriate carType attribute value for that vehicle.

5 Repeat the previous step to assign a carType attribute to the other vehicle.

7-53

7 Object Detection

_j Attributes and Sublabels
| Car
— Aftributes.
carType | Sedan v|
Sedan
Wagaon
—Sublabels
headlight : 2

You can also add attributes to sublabels. Add an attribute for the headlight sublabel that tells
whether the headlight is on.
In the ROI Labels pane on the left, select the headlight sublabel and click Attribute.

2 In the Attribute Name box, type 1s0n. Set the attribute type to Logical. Leave the Default
Value set to Empty, optionally write a description, and click OK.

3 Select a headlight in the video frame. Set the appropriate isOn attribute value, or leave the
attribute value set to Empty.

4 Repeat the previous step to set the isOn attribute for the other headlights.

7-54

Get Started with the Image Labeler

j Attributes and Sublabels
Car
" headlight
—Attributes
is0n ol
Empty |
True
False
ﬁ!l-.
|
| o
|
|
| |
o _ Sublabels
" | Sublabel cannot contain sublabels.

To delete an attribute, right-click an ROI label or sublabel, and select the attribute to delete. Deleting
the attribute removes attribute information from all previously created ROI label annotations.

Create Scene Labels

A scene label defines additional information for the entire scene. Use scene labels to describe
conditions, such as lighting and weather, or events, such as lane changes.

Create a scene label to use in the video.

1 Select the Scene Labels tab on the left.

2 (Click the Define new scene label button, and create a scene label named sunny. Make sure
Group is set to None. Click OK.

7-55

7 Object Detection

ROI Labels | Scene Labels |
duh Define new scene label

{®) Current Frame Add Label

() Time Interval Remove Label

F sunny

The Scene Labels pane shows the scene label definition.

3 You can apply the label to just the current frame or to an interval of frames. With the sunny
scene label definition still selected in the Scene Labels pane, select Time Interval.

4 Click the Add Label. A checkmark appears for the sunny scene label indicating that the label
now applies to all frames in the time interval.

ROl Labels | Scene Labels |
E‘u\j Define new scene label
() Current Frame Add Label
(@ Time Interval Remaove Label
F sunny -

5 To edit or delete a scene label, right-click on the label and select either Edit Label or Delete
Label.

Label Ground Truth

So far, you have labeled only one frame in the video. To label the remaining frames, choose one of
these options.

Label Ground Truth Manually
When you click the right arrow key to advance to the next frame, the ROI labels from the previous

frame do not carry over. Only the sunny scene label applies to each frame, because this label was
applied over the entire time interval.

7-56

Get Started with the Image Labeler

Advance frame by frame and draw the label and sublabel ROIs manually. Also update the attribute
information for these ROIs.

Label Ground Truth Using Automation Algorithm

To speed up the labeling process, you can use an automation algorithm within the app. You can either
define your own automation algorithm, see “Create Automation Algorithm for Labeling” on page 7-35
and “Temporal Automation Algorithms” on page 7-85, or use a built-in automation algorithm. In this
example, you label the ground truth using a built-in point tracking algorithm.

In this example, you automate the labeling of only the Car ROI labels. The built-in automation
algorithms do not support sublabel and attribute automation.

1 Select the labels you want to automate. In the first frame of the video, press Ctrl and click to
select the two Car label annotations. The labels are highlighted in yellow.

2 From the app toolstrip, select Select Algorithm > Point Tracker. This algorithm tracks one or
more rectangle ROIs over short intervals using the Kanade-Lucas-Tomasi (KLT) algorithm.

3 (optional) Configure the automation settings. For example, make sure that Import selected
ROIs is selected so that the Car labels you selected are imported into the automation session.

Import selected ROIs

4 Click Automate to open an automation session. The algorithm instructions appear in the right
pane, and the selected labels are available to automate.

7-57

7 Object Detection

: visiontraffic.avi | Attributes and Sublabels | Point Tracker |

7-58

ROl Selection: 'ou can select ROls to track before or after entering Automation
mode. To select before automation, click one RO, or for multiple ROls, use
Ctri+click.

Run: Click Run to track the selected ROls over the interval.

Review and Modify: Review automated labels manually. Y'ou can modify, delete,
and add new labels.

Change Settings: If you are not satizfied with the results, click Undo Run. Click

= Settings to modify algorithm setftings, and then Run again. The Point Tracker is
ideal for short intervals. If the tracker veers off, consider using a different feature
detector.

Accept/Cancel: When you are satisfied with results, click Accept and return to
manual labeling. Click Cancel to return to manual labeling without saving
automation results.

5 Click Run to track the selected ROIs over the interval.
6 Examine the results of running the algorithm.

The vehicles that enter the scene later are unlabeled. The unlabeled vehicles did not have an
initial ROI label, so the algorithm did not track them. Click Undoe Run. Use the slider to find the
frames where each vehicle first appears. Draw vehicle ROIs around each vehicle, and then click
Run again.

7 Advance frame by frame and manually move, resize, delete, or add ROIs to improve the results of
the automation algorithm.

When you are satisfied with the algorithm results, click Accept. Alternatively, to discard labels
generated during the session and label manually instead, click Cancel. The Cancel button
cancels only the algorithm session, not the app session.

Optionally, you can now manually label the remaining frames with sublabel and attribute information.

To further evaluate your labels, you can view a visual summary of the labeled ground truth. From the
app toolstrip, select View Label Summary. Use this summary to compare the frames, frequency of
labels, and scene conditions. For more details, see “View Summary of Ground Truth Labels” on page
7-87. This summary does not support sublabels or attributes.

Export Labeled Ground Truth

You can export the labeled ground truth to a MAT-file or to a variable in the MATLAB workspace. In
both cases, the labeled ground truth is stored as a groundTruth object. You can use this object to
train a deep-learning-based computer vision algorithm. For more details, see “Training Data for
Object Detection and Semantic Segmentation” on page 7-31.

Note If you export pixel data, the pixel label data and ground truth data are saved in separate files
but in the same folder. For considerations when working with exported pixel labels, see “How Labeler
Apps Store Exported Pixel Labels” on page 7-9.

In this example, you export the labeled ground truth to the MATLAB workspace. From the app
toolstrip, select Export Labels > To Workspace. The exported MATLAB variable is gTruth.

Get Started with the Image Labeler

Display the properties of the exported groundTruth object. The information in your exported object
might differ from the information shown here.

gTruth
gTruth =

groundTruth with properties:

DataSource: [1x1 groundTruthDataSource]
LabelDefinitions: [2x6 table]
LabelData: [531x3 timetable]

Data Source

DataSource is a groundTruthDataSource object containing the path to the images or video and
timestamps. Display the properties of this object.

gTruth.DataSource
ans =
groundTruthDataSource for a video file with properties

Source: ...matlab\toolbox\vision\visiondata\visiontraffic.avi
TimeStamps: [531x1 duration]

Label Definitions

LabelDefinitions is a table containing information about the label definitions. This table does not
contain information about the labels that are drawn on the video frames. To save the label definitions
in their own MAT-file, from the app toolstrip, select Save > Label Definitions. You can then import
these label definitions into another app session by selecting Import Files.

Display the label definitions table. Each row contains information about an ROI label definition or a
scene label definition. If you exported pixel label data, the LabelDefinitions table also includes a
PixelLabelID column containing the ID numbers for each pixel label definition.

gTruth.LabelDefinitions

ans =
3x6 table
Name Type LabelColor Group Description Hierarchy
{'Car' } Rectangle {1x3 double} {'Vehicle'} {0x0 char} {1x1 struct}
{'Truck"'} Rectangle {1x3 double} {'Vehicle'} {0x0 char} {0x0 double}
{'Sunny'} Scene {1x3 double} {'Weather'} {0x0 char} {0x0 double}

Within LabelDefinitions, the Hierarchy column stores information about the sublabel and
attribute definitions of a parent ROI label.

Display the sublabel and attribute information for the Car label.
gTruth.LabelDefinitions.Hierarchy{1}

ans =

7-59

7 Object Detection

7-60

struct with fields:
numDoors: [1x1 struct]

color: [1x1 struct]
inMotion: [1x1 struct]
carType: [1x1 struct]

headlight: [1x1 struct]
Type: Rectangle
Description: "'

Display information about the headlight sublabel.
gTruth.LabelDefinitions.Hierarchy{1}.headlight
ans =
struct with fields:
Type: Rectangle
Description: "'

Color: [0.5862 0.8276 0.3103]
isOn: [1x1 struct]

Display information about the carType attribute.
gTruth.LabelDefinitions.Hierarchy{1}.carType
ans =
struct with fields:
ListItems: {3x1 cell}

Description: "'

Save App Session

From the app toolstrip, select Save and save a MAT-file of the app session. The saved session includes
the data source, label definitions, and labeled ground truth. It also includes your session preferences,
such as the layout of the app. To change layout options, select Layout.

The app session MAT-ile is separate from the ground truth MAT-file that is exported when you select
Export > From File. To share labeled ground truth data, as a best practice, share the ground truth
MAT-ile containing the groundTruth object, not the app session MAT-file. For more details, see
“Share and Store Labeled Ground Truth Data” on page 7-91.

See Also

Apps
Image Labeler

Objects
groundTruth | groundTruthDataSource | imageDatastore | labelDefinitionCreator |
vision.labeler.AutomationAlgorithm

More About

. “Training Data for Object Detection and Semantic Segmentation” on page 7-31

Get Started with the Image Labeler

“Keyboard Shortcuts and Mouse Actions for Image Labeler” on page 7-97
“Use Sublabels and Attributes to Label Ground Truth Data” on page 7-81
“Label Pixels for Semantic Segmentation” on page 7-39

“Training Data for Object Detection and Semantic Segmentation” on page 7-31
“Create Automation Algorithm for Labeling” on page 7-35

7-61

7 Object Detection

Choose an App to Label Ground Truth Data

You can use Computer Vision Toolbox and Automated Driving Toolbox apps to label ground truth data.
Use this labeled data to validate or train algorithms such as image classifiers, object detectors, and
semantic segmentation networks. The choice of labeling app depends on several factors, including
the supported data sources, labels, and types of automation.

One key consideration is the type of data that you want to label.

* Ifyour data is an image collection, use the Image Labeler app. An image collection is an
unordered set of images that can vary in size. For example, you can use the app to label images of
books for training a classifier.

+ Ifyour data is a single video or image sequence, use the Video Labeler app. An image sequence
is an ordered set of images that resembles a video. For example, you can use this app to label a
video or image sequence of cars driving on a highway for training an object detector.

» Ifyour data includes multiple time-overlapped signals, such as videos, image sequences, or lidar
signals, use the Ground Truth Labeler app. For example, you can label data for a single scene
captured by multiple sensors mounted on a vehicle.

The table summarizes the key features of these labeling apps.

Labeling App Data Sources Label Support Automation Additional
Features
Image Labeler * Image Rectangle * Built-in * View visual
(Computer Vision collections regions of automation summary of
Toolbox) interest (ROIs) algorithms labeled data
Line ROIs * Custom
Pixel ROIs automation
algorithms
Sublabels
Attributes
Scenes
Video Labeler * Videos Rectangle ROIs |+ Built-in * View visual
(Computer Vision |, Image Line ROIs automation summary of
Toolbox) sequences el S (ajlgotrlthms labeled data
+ Custom image Sublabels S Rl
data sources . automation
Attributes algorithms
Scenes * Temporal
automation
algorithms

7-62

Choose an App to Label Ground Truth Data

Labeling App Data Sources Label Support Automation Additional
Features
Ground Truth Videos * Rectangle ROIs |* Built-in * View visual
Labeler Image o Crlhatel 190 automation summary of
(Automated sequences) algorithms, labeled data
Driving Toolbox) , * Line ROIs including . Connect
Custom image |, pixe] ROIs vehicle and external tool to
data sources 1 detection
Point cloud + Sublabels eine o 1 app for
oint clou .) algorithms an S alenting e
sequences (PCD|* Attributes a point cloud san)chZon?zed
or PLY files) * Scenes .temporal . signals, such as
Velodyne® lidar interpolation lidar or CAN
files algorithm bus data
Rosbags * Custom Customize
(requires ROS automation loading
Toolbox) algorithms interface to
+ Temporal support
automation additional data
algorithms sources
See Also
More About

. “Get Started with the Image Labeler” on page 7-49
. “Get Started with the Video Labeler” on page 7-64
. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)

7-63

7 Object Detection

Get Started with the Video Labeler

7-64

The Video Labeler app provides an easy way to mark rectangular region of interest (ROI) labels,
polyline ROI labels, pixel ROI labels, and scene labels in a video or image sequence. This example
gets you started using the app by showing you how to:

* Manually label an image frame from a video.
* Automatically label across image frames using an automation algorithm.
» Export the labeled ground truth data.

Load Unlabeled Data

Open the app and load a video of vehicles driving on a highway. Videos must be in a file format
readable by VideoReader.

videolLabeler('visiontraffic.avi')
Alternatively, open the app from the Apps tab, under Image Processing and Computer Vision.
Then, from the Load menu, load a video data source.

Explore the video. Click the Play button] to play the entire video, or use the slider ! to navigate
between frames.

4 Video Labeler - o x

000000 05 37204 R 1w

Stan Time Cument End Time Max Time

The app also enables you to load image sequences, with corresponding timestamps, by selecting
Load > Image Sequence. The images must be readable by imread.

To load a custom data source that cannot be read by VideoReader or imread, see “Use Custom
Image Source Reader for Labeling” on page 7-79.

Set Time Interval to Label

You can label the entire video or start with a portion of the video. In this example, you label a five-
second time interval within the loaded video. In the text boxes below the video, enter these times in
seconds:

1 In the Current Time box, type 5 and press Enter.

2 In the Start Time box, type 5 so that the slider is at the start of the time interval.

Get Started with the Video Labeler

3 Inthe End Time box, type 10.

0500000 05.00000 10.00000
Start Time Current End Time

Optionally, to make adjustments to the time interval, click and drag the red interval flags.

—o

The entire app is now set up to focus on this specific time interval. The video plays only within this
interval, and labeling and automation algorithms apply only to this interval. You can change the
interval at any time by moving the flags.

To expand the time interval to fill the entire playback section, click Zoom in Time Interval.

Create Label Definitions

Define the labels you intend to draw. In this example, you define labels directly within the app. To
define labels from the MATLAB command line instead, use the labelDefinitionCreator.

Create ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI). You can define these types of
ROI labels.

ROI Label Description Example: Driving Scene
Rectangle Draw rectangular ROI labels Vehicles, pedestrians, road signs
(bounding boxes) around

objects.

7-65

7 Object Detection

ROI Label Description Example: Driving Scene
Line Draw linear ROI labels to Lane boundaries, guard rails,
represent lines. To draw a road curbs
polyline ROI, use two or more
points.
Pixel label Assign labels to pixels for Vehicles, road surface, trees,

semantic segmentation. You can
label pixels manually using
polygons, brushes, or flood fill.
For more on pixel labeling, see
“Label Pixels for Semantic
Segmentation” on page 7-39.

pavement

In this example, you define a vehicle group for labeling types of vehicles, and then create a
Rectangle ROI label for a Car and a Truck. Optionally, you can use the Show ROI Labels drop-
down menu to select On Hover, Always, or Never to control how the ROI label names appear during
labeling. By default, the names will appear when you hover on an ROLI.

1 In the ROI Labels pane on the left, click Label.
2 Create a Rectangle label named Car.
3 Optionally, change the label color by clicking the preview color.

Label Name

Car Rectangle v |

4 From the Group drop-down menu, select New Group and name the group Vehicle
5 Click OK.

The Vehicle group name appears in the ROI Labels pane with the label Car created. You can
move a label in the list to a different position or group in the list by left-clicking and dragging the
label up or down.

6 Add a second label. Click Label. Name the label Truck and make sure the Vehicle group is
selected. Click OK.

7-66

Get Started with the Video Labeler

7 Use the mouse to draw rectangular Car ROIs around the two vehicles.

| ROILabels | Scenelabels | __|‘ image4 |
BB (B
Label Sublabel Attribute
- Vehicle
| b Car 10 _
F Truck 10O I

Create Sublabels

A sublabel is a type of ROI label that corresponds to a parent ROI label. Each sublabel must belong
to, or be a child of, a specific label defined in the ROI Labels pane. For example, in a driving scene, a
vehicle label might have sublabels for headlights, license plates, or wheels.

Define a sublabel for headlights.

In the ROI Labels pane on the left, click the Car label.
Click Sublabel.
3 Create a Rectangle sublabel named headlight and optionally write a description. Click OK.

The headlight sublabel appears in the ROI Labels pane. The sublabel is nested under the
selected ROI label, Car, and has the same color as its parent label.

You can add multiple sublabels under a label. You can also drag-and-drop the sublabels to reorder
them in the list. Right-click any label for additional edits.

| ROI Labels | Scene Labels |
H =8 =
Label Sublabel Attribute
- \ehicle
F Car ia
b headlight O
F Truck O

7-67

7 Object Detection

7-68

In the ROI Labels pane, select the headlight sublabel.

5 Inthe image frame, select the Car label. The label turns yellow when selected. You must select

the Car label (parent ROI) before you can add a sublabel to it.

Draw headlight sublabels for each of the cars.

6 Repeat the previous steps to label the headlights of the other car. To draw the labels more
precisely, use the pan and zoom options located in the upper-right corner of the labeling window.

Sublabels can only be used with rectangular or polyline ROI labels and cannot have their own
sublabels. For more details on working with sublabels, see “Use Sublabels and Attributes to Label
Ground Truth Data” on page 7-81.

Create Attributes

An attribute provides further categorization of an ROI label or sublabel. Attributes specify additional
information about a drawable label. For example, in a driving scene, attributes might include the type
or color of a vehicle.

You can define these types of attributes.

Attribute Type Sample Attribute Definition |Sample Default Values
Numeric Value

Attribute Name

numCoors Mu

Default Scalar Value (Optional)
4

String Attribute Name
color String

Default Walue (Optional)

Get Started with the Video Labeler

Attribute Type Sample Attribute Definition |Sample Default Values
Logical Adtribute Name [Attributes and Sublabels |
inMotion Logic
Default Value (Optional) Car
True Attributes
List Adttribute Name -
Missan
carType List o
List tem= (Each item must appear on a new line) True
Sedan ~
Hatchback Blue
Wagon
v 4
carType Sedan
Sedan
Wagan

Add an attribute for the vehicle type.

In the ROI Labels pane on the left, select the Car label and click Attribute.
In the Attribute Name box, type carType. Set the attribute type to List.

In the List Items section, type different types of cars, such as Sedan, Hatchback, and Wagon,
each on its own line. Optionally give the attribute a description, and click OK.

In the first frame of the video, select a Car ROI label. In the Attributes and Sublabels pane,
select the appropriate carType attribute value for that vehicle.

Repeat the previous step to assign a carType attribute to the other vehicle.

7-69

7 Object Detection

_j Attributes and Sublabels
| Car
— Aftributes.
carType | Sedan v|
Sedan
Wagaon
—Sublabels
headlight : 2

You can also add attributes to sublabels. Add an attribute for the headlight sublabel that tells
whether the headlight is on.
In the ROI Labels pane on the left, select the headlight sublabel and click Attribute.

2 In the Attribute Name box, type 1s0n. Set the attribute type to Logical. Leave the Default
Value set to Empty, optionally write a description, and click OK.

3 Select a headlight in the video frame. Set the appropriate isOn attribute value, or leave the
attribute value set to Empty.

4 Repeat the previous step to set the isOn attribute for the other headlights.

7-70

Get Started with the Video Labeler

j Attributes and Sublabels
Car
" headlight
—Attributes
is0n ol
Empty |
True
False
ﬁ!l-.
|
| o
|
|
| |
o _ Sublabels
" | Sublabel cannot contain sublabels.

To delete an attribute, right-click an ROI label or sublabel, and select the attribute to delete. Deleting
the attribute removes attribute information from all previously created ROI label annotations.

Create Scene Labels

A scene label defines additional information for the entire scene. Use scene labels to describe
conditions, such as lighting and weather, or events, such as lane changes.

Create a scene label to use in the video.

1 Select the Scene Labels tab on the left.

2 (Click the Define new scene label button, and create a scene label named sunny. Make sure
Group is set to None. Click OK.

7-71

7 Object Detection

ROI Labels | Scene Labels |
duh Define new scene label

{®) Current Frame Add Label

() Time Interval Remove Label

F sunny

The Scene Labels pane shows the scene label definition.

3 You can apply the label to just the current frame or to an interval of frames. With the sunny
scene label definition still selected in the Scene Labels pane, select Time Interval.

4 Click the Add Label. A checkmark appears for the sunny scene label indicating that the label
now applies to all frames in the time interval.

ROl Labels | Scene Labels |
E‘u\j Define new scene label
() Current Frame Add Label
(@ Time Interval Remaove Label
F sunny -

5 To edit or delete a scene label, right-click on the label and select either Edit Label or Delete
Label.

Label Ground Truth

So far, you have labeled only one frame in the video. To label the remaining frames, choose one of
these options.

Label Ground Truth Manually
When you click the right arrow key to advance to the next frame, the ROI labels from the previous

frame do not carry over. Only the sunny scene label applies to each frame, because this label was
applied over the entire time interval.

7-72

Get Started with the Video Labeler

Advance frame by frame and draw the label and sublabel ROIs manually. Also update the attribute
information for these ROIs.

Label Ground Truth Using Automation Algorithm

To speed up the labeling process, you can use an automation algorithm within the app. You can either
define your own automation algorithm, see “Create Automation Algorithm for Labeling” on page 7-35
and “Temporal Automation Algorithms” on page 7-85, or use a built-in automation algorithm. In this
example, you label the ground truth using a built-in point tracking algorithm.

In this example, you automate the labeling of only the Car ROI labels. The built-in automation
algorithms do not support sublabel and attribute automation.

1 Select the labels you want to automate. In the first frame of the video, press Ctrl and click to
select the two Car label annotations. The labels are highlighted in yellow.

2 From the app toolstrip, select Select Algorithm > Point Tracker. This algorithm tracks one or
more rectangle ROIs over short intervals using the Kanade-Lucas-Tomasi (KLT) algorithm.

3 (optional) Configure the automation settings. For example, make sure that Import selected
ROIs is selected so that the Car labels you selected are imported into the automation session.

Import selected ROIs

4 Click Automate to open an automation session. The algorithm instructions appear in the right
pane, and the selected labels are available to automate.

7-73

7 Object Detection

: visiontraffic.avi | Attributes and Sublabels | Point Tracker |

7-74

ROl Selection: 'ou can select ROls to track before or after entering Automation
mode. To select before automation, click one RO, or for multiple ROls, use
Ctri+click.

Run: Click Run to track the selected ROls over the interval.

Review and Modify: Review automated labels manually. Y'ou can modify, delete,
and add new labels.

Change Settings: If you are not satizfied with the results, click Undo Run. Click

= Settings to modify algorithm setftings, and then Run again. The Point Tracker is
ideal for short intervals. If the tracker veers off, consider using a different feature
detector.

Accept/Cancel: When you are satisfied with results, click Accept and return to
manual labeling. Click Cancel to return to manual labeling without saving
automation results.

5 Click Run to track the selected ROIs over the interval.
6 Examine the results of running the algorithm.

The vehicles that enter the scene later are unlabeled. The unlabeled vehicles did not have an
initial ROI label, so the algorithm did not track them. Click Undoe Run. Use the slider to find the
frames where each vehicle first appears. Draw vehicle ROIs around each vehicle, and then click
Run again.

7 Advance frame by frame and manually move, resize, delete, or add ROIs to improve the results of
the automation algorithm.

When you are satisfied with the algorithm results, click Accept. Alternatively, to discard labels
generated during the session and label manually instead, click Cancel. The Cancel button
cancels only the algorithm session, not the app session.

Optionally, you can now manually label the remaining frames with sublabel and attribute information.

To further evaluate your labels, you can view a visual summary of the labeled ground truth. From the
app toolstrip, select View Label Summary. Use this summary to compare the frames, frequency of
labels, and scene conditions. For more details, see “View Summary of Ground Truth Labels” on page
7-87. This summary does not support sublabels or attributes.

Export Labeled Ground Truth

You can export the labeled ground truth to a MAT-file or to a variable in the MATLAB workspace. In
both cases, the labeled ground truth is stored as a groundTruth object. You can use this object to
train a deep-learning-based computer vision algorithm. For more details, see “Training Data for
Object Detection and Semantic Segmentation” on page 7-31.

Note If you export pixel data, the pixel label data and ground truth data are saved in separate files
but in the same folder. For considerations when working with exported pixel labels, see “How Labeler
Apps Store Exported Pixel Labels” on page 7-9.

In this example, you export the labeled ground truth to the MATLAB workspace. From the app
toolstrip, select Export Labels > To Workspace. The exported MATLAB variable is gTruth.

Get Started with the Video Labeler

Display the properties of the exported groundTruth object. The information in your exported object
might differ from the information shown here.

gTruth
gTruth =

groundTruth with properties:

DataSource: [1x1 groundTruthDataSource]
LabelDefinitions: [2x6 table]
LabelData: [531x3 timetable]

Data Source

DataSource is a groundTruthDataSource object containing the path to the images or video and
timestamps. Display the properties of this object.

gTruth.DataSource
ans =
groundTruthDataSource for a video file with properties

Source: ...matlab\toolbox\vision\visiondata\visiontraffic.avi
TimeStamps: [531x1 duration]

Label Definitions

LabelDefinitions is a table containing information about the label definitions. This table does not
contain information about the labels that are drawn on the video frames. To save the label definitions
in their own MAT-file, from the app toolstrip, select Save > Label Definitions. You can then import
these label definitions into another app session by selecting Import Files.

Display the label definitions table. Each row contains information about an ROI label definition or a
scene label definition. If you exported pixel label data, the LabelDefinitions table also includes a
PixelLabelID column containing the ID numbers for each pixel label definition.

gTruth.LabelDefinitions

ans =
3x6 table
Name Type LabelColor Group Description Hierarchy
{'Car' } Rectangle {1x3 double} {'Vehicle'} {0x0 char} {1x1 struct}
{'Truck"'} Rectangle {1x3 double} {'Vehicle'} {0x0 char} {0x0 double}
{'Sunny'} Scene {1x3 double} {'Weather'} {0x0 char} {0x0 double}

Within LabelDefinitions, the Hierarchy column stores information about the sublabel and
attribute definitions of a parent ROI label.

Display the sublabel and attribute information for the Car label.
gTruth.LabelDefinitions.Hierarchy{1}

ans =

7-75

7 Object Detection

struct with fields:

numDoors: [1x1 struct]
color: [1x1 struct]
inMotion: [1x1 struct]
carType: [1x1 struct]
headlight: [1x1 struct]

Type: Rectangle

Description: "'

Display information about the headlight sublabel.
gTruth.LabelDefinitions.Hierarchy{1}.headlight
ans =
struct with fields:
Type: Rectangle
Description: "'

Color: [0.5862 0.8276 0.3103]
isOn: [1x1 struct]

Display information about the carType attribute.
gTruth.LabelDefinitions.Hierarchy{1}.carType
ans =
struct with fields:
ListItems: {3x1 cell}

Description: "'

Label Data

LabelData is a timetable containing information about the ROI labels drawn at each timestamp,
across the entire video. The timetable contains one column per label.

Display the first few rows of the timetable. The first few timestamps indicate that no vehicles were
detected and that the sunny scene label is false. These results are because this portion of the video
was not labeled. Only the time interval of 5-10 seconds was labeled.

labelData = gTruth.labelData;
head(labelData)

ans =

8x3 timetable

Time Car Truck sunny
5.005 sec [1x2 struct] [1x0 struct] true
5.0384 sec [1x2 struct] [1x0 struct] true
5.0717 sec [1x2 struct] [1x0 struct] true
5.1051 sec [1x2 struct] [1x0 struct] true
5.1385 sec [1x2 struct] [1x0 struct] true
5.1718 sec [1x2 struct] [1x0 struct] true

7-76

Get Started with the Video Labeler

5.2052 sec [1x2 struct] [1x0 struct] true
5.2386 sec [1x2 struct] [1x0 struct] true

Display the first few timetable rows from the 5-10 second interval that contains labels.

gTruthInterval = labelData(timerange('00:00:05','00:00:10'),:);
head(gTruthInterval)

ans =

8x3 timetable

Time Car Truck sunny
5.005 sec [1x2 struct] [1x0 struct] true
5.0384 sec [1x2 struct] [1x0 struct] true
5.0717 sec [1x2 struct] [1x0 struct] true
5.1051 sec [1x2 struct] [1x0 struct] true
5.1385 sec [1x2 struct] [1x0 struct] true
5.1718 sec [1x2 struct] [1x0 struct] true
5.2052 sec [1x2 struct] [1x0 struct] true
5.2386 sec [1x2 struct] [1x0 struct] true

For each Car label, the structure includes the position of the bounding box and information about its
sublabels and attributes.

Display the bounding box positions for the vehicles at the start of the time interval. Your bounding
box positions might differ from the ones shown here.

gTruthInterval(l,:).Car{1l}.Position % [x y width height], in pixels
ans =
1x4 single row vector

415.8962 82.4737 130.8474 129.3805

ans =
1x4 single row vector

235.2182 1.0000 117.0611 55.3500

Save App Session

From the app toolstrip, select Save and save a MAT-file of the app session. The saved session includes
the data source, label definitions, and labeled ground truth. It also includes your session preferences,
such as the layout of the app. To change layout options, select Layout.

The app session MAT-file is separate from the ground truth MAT-file that is exported when you select
Export > From File. To share labeled ground truth data, as a best practice, share the ground truth
MAT-file containing the groundTruth object, not the app session MAT-file. For more details, see
“Share and Store Labeled Ground Truth Data” on page 7-91.

7-77

7 Object Detection

See Also

Apps
Video Labeler

Objects
groundTruth | groundTruthDataSource | labelDefinitionCreator |
vision.labeler.AutomationAlgorithm | vision.labeler.mixin.Temporal

More About

. “Use Custom Image Source Reader for Labeling” on page 7-79

. “Keyboard Shortcuts and Mouse Actions for Video Labeler” on page 7-100

. “Use Sublabels and Attributes to Label Ground Truth Data” on page 7-81

. “Label Pixels for Semantic Segmentation” on page 7-39

. “Create Automation Algorithm for Labeling” on page 7-35

. “View Summary of Ground Truth Labels” on page 7-87

. “Share and Store Labeled Ground Truth Data” on page 7-91

. “Training Data for Object Detection and Semantic Segmentation” on page 7-31

7-78

Use Custom Image Source Reader for Labeling

Use Custom Image Source Reader for Labeling

In this section...

“Create Custom Reader Function” on page 7-79
“Import Data Source into Video Labeler App” on page 7-79

“Import Data Source into Ground Truth Labeler App” on page 7-80

The Video Labeler and Ground Truth Labeler (requires Automated Driving Toolbox) apps enable
you to label ground truth data in a video or sequence of images.

You can use a custom reader to import any video or sequence of images that is supported by the
VideoReader object or imread function. First, create a custom reader function. Then, load the
custom reader function and corresponding image data source into the Video Labeler or Ground
Truth Labeler app. The Image Labeler app does not support custom data source readers.

Create Custom Reader Function

First, specify a custom reader as a function handle. The custom reader must have this syntax.
outputImage = readerFcn(sourceName,currentTimestamp)

In this example, readerFcn is the name of the custom reader function.

The custom reader function loads an image from sourceName, which corresponds to the current
timestamp specified by currentTimestamp. For example, suppose you want to load the image at the
third timestamp for a timestamps duration vector that runs from 1 to 5 seconds. To specify
currentTimestamp, at the MATLAB command prompt, enter this code.

timestamps = seconds(1:5);
currldx = 3;
currentTimestamp = timestamps(currIdx);

The outputImage output from the custom function must be a grayscale or RGB image in any format
supported by the imshow function. The currentTimestamp output is a scalar value that
corresponds to the current frame that the function is executing.

Import Data Source into Video Labeler App

To import a custom data source into the Video Labeler app, first create a
groundTruthDataSource object. This object stores the data source files and timestamps. Specify
the name of the data source, the custom reader function handle that reads the data, and the
timestamps by using this syntax.

gtSource = groundTruthDataSource(sourceName, readerFcn,timestamps)
To load this object into the app, at the MATLAB command prompt, enter this code.
videolLabeler(gtSource)

Alternatively, on the toolstrip of the Video Labeler app, select Load > Custom Reader. Then, in the
Load Custom Data Source dialog box, specify Custom reader function as a function handle and also
specify Data source name. In addition, you must import corresponding timestamps from the
MATLAB workspace.

7-79

7 Object Detection

S 4 Load Custom Data Source — oo

Q_y Video

Image Sequence Custom reader function

Custom Reader Data source name

LABEL werimin NS

Label Definitions |mpn|‘t “WWS f'r,;:“'n wnrﬁpace

-—'j Session

Click here for more information

oad Cancel

Import Data Source into Ground Truth Labeler App

To import the custom image data source into the Ground Truth Labeler app, on the app toolstrip,
select Open > Add Signals. Then, in the dialog box, set Source Type to Custom Image. You can
then specify the custom reader function, data source name, and timestamps, and then click Add
Source to load the image data source.

4 Add/Remave Signal . ’
Source Type: :i;“*,nm image D} |
Custom Reader Function e e

Source Name

Add Source

See Also

Apps
Ground Truth Labeler | Video Labeler

Objects
groundTruth | groundTruthDataSource | groundTruthMultisignal

More About

. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “Get Started with the Video Labeler” on page 7-64

7-80

Use Sublabels and Attributes to Label Ground Truth Data

Use Sublabels and Attributes to Label Ground Truth Data

In the Image Labeler, Video Labeler, and Ground Truth Labeler (requires Automated Driving
Toolbox) apps, a sublabel is a type of label for drawing regions of interest (ROIs) around objects that
belong to a parent label. You can use sublabels to provide a greater level of detail about the ROIs in
your labeled ground truth data. For example:

» For a bird label, you can define wing or beak sublabels.
* For a vehicle label, you can define headlight, licensePlate, and wheel sublabels.

| [ROILabel Definition | | [visiontrafficavi |
[m |m [
" Label Sublabel Attribute
| » wehicle i
b headlight i

F licensePlate

F wheel

When to Use Sublabels vs. Attributes

A sublabel can be anything that is drawable and is part of a parent label. An attribute provides
information about labels. However, attributes are not drawable and they can be associated with either
a label or a sublabel.

Consider the possible sublabel and attribute candidates for the label vehicle:

* A wheel is a good candidate for a sublabel. A wheel is part of a vehicle, and you can draw a label
around a wheel.

* Vehicle color is a good candidate for an attribute. You cannot draw a label around the color of a
vehicle.

* Vehicle type (car, truck, and so on) is a good candidate for an attribute. Although you can draw a
label around cars and trucks, they are not part of a vehicle. Instead, you can define a list attribute
with types car and truck, or define logical attributes named isCar, isTruck, and so on.

Draw Sublabels

Within each frame, each sublabel that you draw must be associated with a parent label. Therefore,
before you can draw a sublabel on a frame, you must:

7-81

7 Object Detection

1 From the ROI Label Definition pane, select the type of sublabel that you want to draw.
2 Within the frame, select a parent ROI label.

For example, to label the headlights of a vehicle, you must first select the headlight sublabel
definition. On the frame, however, you cannot yet create a sublabel.

B B
Label Attribute
» vehicle !
» headlight =
b licenseP. .. o
¥ wheel B

7-82

| ROI Label Definition |

After you select a vehicle label on the frame, you can draw a sublabel that is associated with that
vehicle. Once you create a sublabel, you cannot add another sublabel to the vehicle unless you select
the vehicle label again.

Notice that sublabels do not have to be completely enclosed within the parent label. You can drag
sublabels outside the bounds of the parent label and the parent-child relationship remains
unchanged.

Copy and Paste Sublabels
When labeling, it is common to copy (Ctrl+C) and paste (Ctrl+V) labels from one frame into another.

If you copy a sublabel into another frame, the parent label is copied over as well. That way, the
parent-child relationship is maintained between frames. Any sublabels that you did not select to copy
do not appear in the new frame.

Use Sublabels and Attributes to Label Ground Truth Data

Copy Sublabel Paste to Next Frame
lﬁ—-ln‘_—

If you copy a parent label, however, the associated sublabels are not copied over.

Copy Label Paste to Next Frame

Delete Sublabels

To delete an ROI sublabel from a frame, right-click the sublabel and select the Delete option for the
sublabel shape.

To delete an ROI sublabel definition, from the ROI Label Definition pane, right-click the sublabel
and select Delete.

Caution If you delete a sublabel, all ROI sublabel annotations currently on the frames are deleted as
well. Attribute definitions for that sublabel are deleted as well.

7-83

7 Object Detection

Sublabel Limitations

* Sublabels can be used only with rectangle and polyline labels.
* Sublabels cannot have their own sublabels.
* The built-in automation algorithms do not support sublabel automation.

* When you click View Label Summary, the Label Summary window does not display sublabel
information.

See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

More About

. “Get Started with the Image Labeler” on page 7-49

. “Get Started with the Video Labeler” on page 7-64

. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
. “Label Pixels for Semantic Segmentation” on page 7-39

. “Automate Attributes of Labeled Objects” (Automated Driving Toolbox)

7-84

Temporal Automation Algorithms

Temporal Automation Algorithms

The labeling apps in Computer Vision Toolbox and Automated Driving Toolbox enable you to create
and import a custom automation algorithm to automatically label your data. Automation algorithms
can be time-independent or time-dependent.

» Time-independent (nontemporal) algorithms can operate independently on each timestamp (or
image). For example, a detection algorithm, such as the built-in people detector, is a time-
independent algorithm.

* Time-dependent (temporal) algorithms have a dependence on the timestamp of execution. For
example, a tracking algorithm, such as the temporal built-in Point Tracker, uses tracking from a
previous time stamp to track objects in the current time stamp.

The Image Labeler app supports only nontemporal algorithms. The Video Labeler and Ground
Truth Labeler apps support nontemporal and temporal algorithms.

Create Temporal Automation Algorithm

To create a temporal automation algorithm to use with a labeling app, on the app toolstrip, select
Select Algorithm > Add Algorithm > Create New Algorithm. A class template opens, enabling
you to define your algorithm. By default, the class inherits from the
vision.labeler.AutomationAlgorithmand vision.labeler.mixin.Temporal classes, as
shown by the class definition of the template:

classdef MyCustomAlgorithm < vision.labeler.AutomationAlgorithm && vision.labeler.mixin.Temporal

Time-based algorithms must inherit from both of these classes. Inheriting from the temporal mixin
class enables you to access properties such as StartTime, CurrentTime and EndTime to design
time-based algorithms. For more details on enabling temporal properties, see the
vision.labeler.mixin.Temporal class reference page. For more details on defining custom
automation algorithms in general, see the vision.labeler.AutomationAlgorithm class
reference page.

After creating your algorithm, follow the instructions in the class template on where to save the
algorithm.

Run Temporal Automation Algorithm

To run your temporal algorithm from the labeling, first refresh the algorithm list. On the app
toolstrip, select Select Algorithm > Refresh list. Then, reopen the Select Algorithm list, select
your algorithm, and run it on your data as you would any of the built-in automation algorithms.

For temporal algorithms, you can additionally configure the direction of automation. Click Configure
Automation. By default, automation algorithms apply labels from the start of the time interval to the
end. To change the direction and start time of the algorithm, choose one of the options shown in this
table.

7-85

7 Object Detection

Direction of automation

Run automation from

Example

{0y Configure Automation

Dirgction of automation:
O Forward
@ Reverse

Run autemation from:
O Start time to End time
™ Current time to End time

Run autemation from:
™ End time to Start time
© Current time to Start time

Direction of automation:

Run autemation from:
O Start time to End time

oo

™ Forward
O Reverse ™ Current time to End time
Run automation from: r
™ End time to Start time
© Current time to Start time
See Also
Apps

Ground Truth Labeler | Video Labeler

Functions

vision.labeler.AutomationAlgorithm | vision.labeler.mixin.Temporal

Related Examples

. “Get Started with the Video Labeler” on page 7-64
. “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)

. “Automate Ground Truth Labeling for Semantic Segmentation” (Automated Driving Toolbox)
. “Automate Ground Truth Labeling of Lane Boundaries” (Automated Driving Toolbox)

7-86

View Summary of Ground Truth Labels

View Summary of Ground Truth Labels

In this section...

“View Label Summary” on page 7-87
“Compare Selected Labels” on page 7-89

You can use the Image Labeler, Video Labeler, and Ground Truth Labeler (requires Automated
Driving Toolbox) apps to interactively label ground truth data in image collections, videos, image
sequences, or lidar point clouds. For details about the supported data sources, see “Choose an App to
Label Ground Truth Data” on page 7-62.

You can view and compare the distribution of ROI and scene labels by clicking View Label Summary
on the app toolstrip.

Algorithm:
| | Select Algorithm ~

Wiew Label
Summary

tomate

Export

@ Configure Automation L ahels

AUTOMATE LABELING SUMMARY

M T g SIE

View Label Summary

Clicking View Label Summary opens dockable distribution graphs for the ROI and scene labels.

The x-axis of the graph displays the timestamps across the duration of the video, image sequence, or
lidar signal. Units are in seconds. For image collections (Image Labeler app only), the x-axis displays
the numeric ID of each image in the collection.

For all ROI labels except pixels, the y-axis displays the number of ROIs at each timestamp or for each
image. The visual summary does not include information about sublabels or label attributes.

4. Label Summary — O X
N
Select All
Compare Selected Labels PreviNext Unlabeled : M ﬂ
ROI Labels
person M| M|
& T | T
3
2
1
0 | [I— AR | | || I N N B || S
(00:00.00 00:02.50 00:05.00 00:07.50 00:10.00 00:12.50 00:15.00 0:17.50 00:20.0d

For pixel ROI labels, the y-axis displays the percentage of the frame that is labeled for each pixel
label.

7-87

7 Object Detection

(4] Label Summary - O X
|
Select All
Compare Selected Labels Previ/Next Unlabeled : M m
ROI Labels
/‘h,_ book] M|
= T T T T T T T T T T T T I T T T T T T I T T T I T

B
t%lﬂ-

o

s

W

[

b,
(;:S‘l‘._
B,
|
|
For scene labels, the graph displays the presence or absence of a scene label at each timestamp or
for each image in a collection.
(4] Label Summary - [m] X
Select All
Compare Selected Labels Previlext Uniabeled : M| M|
Scene Labels
sunny M M
fue | | f | | f |
- | | \ | | \ |
00:00.00 00:01.27 00:02.55 00:03.82 00:05.10 00:06.37 00:07 .65 00:08.92 00:10.

In the Ground Truth Labeler app, you can view labels by signal. From Signal Name, select a signal
to view a summary of the labels for that signal.

7-88

View Summary of Ground Truth Labels

|4 Label Summary - O x
1
Select All
Compare Selected Labels Prev/Next Unlabeled - m m Signal Name |video_01_city_c2s_fc... ~
ROI Labels video_01_city_c2s_fcw_10s
| lidarsequence k‘
M car |
g | T | T
4 _
3 _
Py
1= _
Py — | 1 1 | | | | |
00:00.00 000127 00:02.55 0:03.82 00:05.10 00:06.37 00:07 .65 00:08.92 00:10.2(
truck M| M|
2 | T T
1= _
0 | | | | | | |
00:00.00 00:01.27 00:02.55 00:03.82 00:05.10 00:06.37 00:07 .65 00:08.92 00:10.2(
Scene Labels
sunny M M|
|bruse I T T
hice | | | | | | |
00:00.00 00:01.27 00:02.55 00:03.82 00:05.10 00:06.37 00:07 .65 00:08.92 00:10.2(

Use the graphs to examine the occurrence of labels over time or in relation to each other. Drag the
black vertical line in any graph to move to a different timestamp or image in a collection.

To dock the Label Summary window in your workspace, select Layout > Dock Label Summary.

= Layout =
SELECT LAYOUT

T Default

Save layout

DOCK
Dock Label Summary

Compare Selected Labels

To selectively compare labels, select specific label check boxes and then click Compare Selected
Labels. The Label Summary window displays ROI labels selected for comparison on a single graph.

7-89

7 Object Detection

|4 Label Summary - O
View Label Summary
7, Pixel Labels W M
%- T T T T T T T T T I T T T | T T T T T T T I T
I 1ok
I cup
‘%'2_
0_.3_
1
See Also
Apps

Ground Truth Labeler | Image Labeler | Video Labeler

Objects
groundTruth | groundTruthMultisignal

More About

L]
L]

7-90

“Choose an App to Label Ground Truth Data” on page 7-62

“Get Started with the Image Labeler” on page 7-49

“Get Started with the Video Labeler” on page 7-64

“Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)

Share and Store Labeled Ground Truth Data

Share and Store Labeled Ground Truth Data

The Image Labeler, Video Labeler, and Ground Truth Labeler (requires Automated Driving
Toolbox) apps enable you to label images, videos, and other ground truth data sources. You can then
export the ground truth labels as a groundTruth object or, for the Ground Truth Labeler app, a
groundTruthMultisignal object. The ground truth object contains information about the:

» Data source (or data sources)

* Label definitions

* Drawn ground truth labels
You can share this object with:

* Other labeling colleagues, who can use it to continue labeling

» Algorithm developers, who can use it to train algorithms, such as an object detector or semantic
segmentation network

* Validation engineers, who can use it to validate algorithms

Share Ground Truth

To export and share labeled ground truth data from one of the labeling apps, select Export Labels >
To File. Then, either share the exported MAT-file directly with individuals on your team or place it in
a shared network location.

If the exported ground truth data contains pixel labels, the app also generates a PixellLabelData
folder containing the pixel label data. The label data table stored in the ground truth object
references the path to this folder. Share this folder along with the ground truth object.

The labeling apps also enable you to save a MAT-file of the entire app session. Do not share this file.
Because the session file contains app preferences that are specific to your local machine, this file
might not work on other machines.

7-91

7 Object Detection

s 2 e ™

Save > Session Export Labels > To File
Do Not Share Current Folder Current Folder Share
m gTruth.mat
|I] applabelingSession.mat
% App preferences {position of PixellabelData
slider, app layout, and so on) {pixel labels only)
gTruth to export Label_1.png

Label 2.png —o—>

If you re-export a ground truth object containing pixel label data, the app generates a new
PixellLabelData folder. Even if you overwrite the original ground truth object, the app generates a
new PixellLabelData folder. When re-exporting the ground truth object, the generated folders are
named PixellLabelData 1, PixellLabelData 2, and so on, depending on how many times you re-
export the object to the same folder.

When sharing a ground truth object, share the correct PixelLabelData folder associated with it.
For example, if you overwrite the original ground truth object, share the overwritten object and the
newly created PixelLabelData 1 folder.

7-92

Share and Store Labeled Ground Truth Data

Current Folder

|:| gifrothmet gTruth.mat

M Sfrush glruth o

PixellLabelData
Label 1.png
Label 2.png |
PixellLabelData 1

Label l.png
Label 2.png /,,"

X o

In addition to sharing the ground truth object, you must also share the data source (or data sources)
and any associated files. These tables show the files to share for each data source in each app.

Image Labeler App Files to Share

Data Source

Files to Share

Image collection

groundTruth object MAT-file
PixelLabelData folder (pixel labels only)

Folders containing image collections (if not in
a shared location)

Video Labeler App Files to Share

Data Source

Files to Share

Video

groundTruth object MAT-file
PixelLabelData folder (pixel labels only)
Video source file (if not in a shared location)

Image sequence

groundTruth object MAT-file
PixelLabelData folder (pixel labels only)

Folder containing image sequence (if not in a
shared location)

Timestamps duration vector (if specified)

7-93

7 Object Detection

7-94

Data Source

Files to Share

Custom image data source reader

groundTruth object MAT-file
PixelLabelData folder (pixel labels only)
Data source files (if not in a shared location)
Custom reader function

Ground Truth Labeler App Files to Share

Data Source

Files to Share

Video

groundTruthMultisignal object MAT-file
PixelLabelData folder (pixel labels only)
Video source file (if not in a shared location)

Image sequence

groundTruthMultisignal object MAT-file
PixelLabelData folder (pixel labels only)

Folder containing image sequence (if not in a
shared location)

Timestamps duration vector (if specified)

Custom image data source reader

groundTruthMultisignal object MAT-file
PixelLabelData folder (pixel labels only)
Data source files (if not in a shared location)
Custom reader function

Point cloud sequence

groundTruthMultisignal object MAT-file
PixelLabelData folder (pixel labels only)

Folder containing point cloud sequence (if not
in a shared location)

Timestamps duration vector (if specified)

Velodyne packet capture (PCAP) file

groundTruthMultisignal object MAT-file
PixelLabelData folder (pixel labels only)
PCAP source file (if not in a shared location)
PCAP calibration file

Timestamps duration vector (if specified)

Rosbag

groundTruthMultisignal object MAT-file
PixelLabelData folder (pixel labels only)
Rosbag file

Move Ground Truth

In the exported ground truth object, the DataSource property contains the absolute paths to the
data source files. For example, suppose you want to view the paths for a groundTruth object,
gTruth, that was exported from the Image Labeler app. At the MATLAB command prompt, enter

this code.

gTruth.DataSource

Share and Store Labeled Ground Truth Data

ans =

groundTruthDataSource for an image collection with properties

Source: {
" ...\matlab\toolbox\vision\visiondata\imageSets\cups\bigMug.jpg';
" ...\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg"'
" ...\matlab\toolbox\vision\visiondata\imageSets\cups\handMade. jpg
... and 9 more
}

If you move the ground truth object to a new location, you might need to change the file paths stored
in the data source (or data sources). Even if the data source files are on a shared network, if other
people map a different drive letter to their network folder, the file paths can be incorrect.

To update these paths, use the changeFilePaths function. Specify the ground truth object as an
input argument to this function. If the paths changed but the files names did not, specify a string
vector containing the old and new path. The function returns any paths that it is unable to resolve.
For example, this code sample shows how to change the drive letter for an image folder.

alternativePaths = ["C:\Shared\ImgFolder" "D:\Shared\ImgFolder"];
unresolvedPaths = changeFilePaths(gTruth,alternativePaths);

If the file names also changed, specify a cell array of string vectors containing the old and new paths.
For example, this code sample shows how to change the drive letter for individual files and how to
append a suffix to each file.

alternativePaths =

{["C:\Shared\ImgFolder\Imgl.png" "D:\Shared\ImgFolder\Imgl new.png"],
["C:\Shared\ImgFolder\Img2.png" "D:\Shared\ImgFolder\Img2 new.png"],

["C:\Shared\ImgFolder\ImgN.png" "D:\Shared\ImgFolder\ImgN new.png"]};
unresolvedPaths = changeFilePaths(gTruth,alternativePaths);

If the ground truth object contains pixel label data, you can also use the changeFilePaths function
to update the path names to the pixel label data stored in the PixelLabelData folder.

Store Ground Truth

Store the ground truth object in a location that is on the MATLAB search path. For more details, see
“What Is the MATLAB Search Path?” (MATLAB).

For data sources whose contents reside in a single folder, consider storing the ground truth object in
the parent folder of the data source. For image collections containing images from different folders,

no specific recommendations exist for where to store the object. To label image collections, use the
Image Labeler app.

See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

7-95

7 Object Detection

Objects
groundTruth | groundTruthDataSource | groundTruthMultisignal

Functions
changeFilePaths (groundTruth) | changeFilePaths (groundTruthMultisignal)

More About
. “How Labeler Apps Store Exported Pixel Labels” on page 7-9

7-96

Keyboard Shortcuts and Mouse Actions for Image Labeler

Keyboard Shortcuts and Mouse Actions for Image Labeler

Note On Macintosh platforms, use the Command (8) key instead of Ctrl.

Label Definitions

Task

Action

In the ROI Label Definition pane, navigate
through ROI labels and their groups

Up arrow or down arrow

In the Scene Label Definition pane, navigate
through scene labels and their groups

Hold Alt and press the up arrow or down arrow

Reorder labels within a group or move labels Click and drag labels
between groups
Reorder groups Click and drag groups

Image Browsing and Selection

Browse and select images from the image browser, which is located in the bottom pane of the app.

Task

Action

Browse through images one at a time

Left arrow and right arrow

Browse to the next set of images that is viewable
in the image browser

PC: Page Up and Page Down

* Mac: Hold Fn and press the up and down
arrows

Go to the first image

* PC: Home
* Mac: Hold Fn and press the left arrow

Go to the last image

* PC: End
* Mac: Hold Fn and press the right arrow

Select all images from the current image to the
first image

* PC: Shift+Home
* Mac: Hold Fn+Shift and press the left arrow

Select all images from the current image to the
last image

* PC: Shift+End

* Mac: Hold Fn+Shift and press the right
arrow

Select all images from the current image to a
specific image

Hold Shift and click the final image in the range

Select a specific set of images

Hold Ctrl and click the images you want to select

Labeling Window

Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs).

7-97

7 Object Detection

7-98

Task Action
Undo labeling action Ctrl+Z
Redo labeling action Ctrl+Y
Select all rectangle and line ROIs Ctrl+A

Select specific rectangle and line ROIs

Hold Ctrl and click the ROIs you want to select

Cut selected rectangle and line ROIs

Ctrl+X

Copy selected rectangle and line ROIs to Ctrl+C
clipboard
Paste copied rectangle and line ROIs Ctrl+Vv
» If a sublabel was copied, both the sublabel
and its parent label are pasted.
» If a parent label was copied, only the parent
label is pasted, not its sublabels.
For more details, see “Use Sublabels and
Attributes to Label Ground Truth Data” on page
7-81.
Delete selected rectangle and line ROIs Delete
Copy all pixel ROIs Ctrl+Shift+C
Paste copied pixel ROIs Ctrl+Shift+V
Fill all or all remaining pixels Shift+click

Polyline Drawing

Draw ROI line labels on a frame. ROI line labels are polylines, meaning that they are composed of one

or more line segments.

Task

Action

Commit a polyline to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polyline

Commit a polyline to the frame, including the
currently active line segment

Double-click while drawing the polyline

A new line segment is committed at the point
where you double-click.

Delete the previously created line segmentina |Backspace
polyline
Cancel drawing and delete the entire polyline Escape

Polygon Drawing

Draw polygons to label pixels on a frame.

Keyboard Shortcuts and Mouse Actions for Image Labeler

Task

Action

Commit a polygon to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polygon

The polygon closes up by forming a line between
the previously committed point and the first point
in the polygon.

Commit a polygon to the frame, including the
currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line between
the point where you double-clicked and the first
point in the polygon.

Remove the previously created line segment from | Backspace
a polygon

Cancel drawing and delete the entire polygon Escape
Zooming

Task Action

Zoom in or out of frame

Move the scroll wheel up (zoom in) or down
(zoom out)

The scroll wheel works in Zoom In, Zoom Out,
and Label mode but not Pan mode.

Zoom in on specific section of frame

From the app toolstrip, under Modes, select
Zoom In. Then, draw a box around the section of
the frame you want to zoom in on.

App Sessions

Task

Action

Save current session

Ctrl+S

See Also
Image Labeler

More About

. “Get Started with the Image Labeler” on page 7-49

7-99

7 Object Detection

Keyboard Shortcuts and Mouse Actions for Video Labeler

7-100

Note On Macintosh platforms, use the Command (8) key instead of Ctrl.

Label Definitions

Task

Action

In the ROI Label Definition pane, navigate
through ROI labels and their groups

Up arrow or down arrow

In the Scene Label Definition pane, navigate
through scene labels and their groups

Hold Alt and press the up arrow or down arrow

Reorder labels within a group or move labels Click and drag labels
between groups
Reorder groups Click and drag groups

Frame Navigation and Time Interval Settings

Navigate between frames in a video or image sequence, and change the time interval of the video or
image sequence. These controls are located in the bottom pane of the app.

Task Action

Go to the next frame Right arrow
Go to the previous frame Left arrow
Go to the last frame + PC: End

» Mac: Hold Fn and press the right arrow

Go to the first frame

* PC: Home
* Mac: Hold Fn and press the left arrow

Navigate through time interval boxes and frame
navigation buttons

Tab

Commit time interval settings

Press Enter within the active time interval box
(Start Time, Current, or End Time)

Labeling Window

Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs).

Task Action
Undo labeling action Ctrl+z
Redo labeling action Ctrl+Y
Select all rectangle and line ROIs Ctrl+A

Select specific rectangle and line ROIs

Hold Ctrl and click the ROIs you want to select

Cut selected rectangle and line ROIs

Ctrl+X

Keyboard Shortcuts and Mouse Actions for Video Labeler

Task Action
Copy selected rectangle and line ROIs to Ctrl+C
clipboard
Paste copied rectangle and line ROIs Ctrl+V
» If a sublabel was copied, both the sublabel
and its parent label are pasted.
» If a parent label was copied, only the parent
label is pasted, not its sublabels.
For more details, see “Use Sublabels and
Attributes to Label Ground Truth Data” on page
7-81.
Delete selected rectangle and line ROIs Delete
Copy all pixel ROIs Ctrl+Shift+C
Paste copied pixel ROIs Ctrl+Shift+V
Fill all or all remaining pixels Shift+click

Polyline Drawing

Draw ROI line labels on a frame. ROI line labels are polylines, meaning that they are composed of one

or more line segments.

Task

Action

Commit a polyline to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polyline

Commit a polyline to the frame, including the
currently active line segment

Double-click while drawing the polyline

A new line segment is committed at the point
where you double-click.

Delete the previously created line segmentina |Backspace
polyline

Cancel drawing and delete the entire polyline Escape
Polygon Drawing

Draw polygons to label pixels on a frame.

Task Action

Commit a polygon to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polygon

The polygon closes up by forming a line between
the previously committed point and the first point
in the polygon.

7-101

7 Object Detection

7-102

Task

Action

Commit a polygon to the frame, including the
currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line between
the point where you double-clicked and the first
point in the polygon.

Remove the previously created line segment from |Backspace
a polygon

Cancel drawing and delete the entire polygon Escape
Zooming

Task Action

Zoom in or out of frame

Move the scroll wheel up (zoom in) or down
(zoom out)

If the frame is in pan mode, then zooming is not
supported. To enable zooming, in the upper-right
corner of the frame, either click the Pan button

to disable panning or click one of the zoom
buttons.

Zoom in on specific section of frame

In the upper-right corner of the frame, click the

Zoom In button “.. Then, draw a box around the
section of the frame that you want to zoom in on.

App Sessions

Task

Action

Save current session

Ctrl+S

See Also
Video Labeler

More About

. “Get Started with the Video Labeler” on page 7-64

Point Feature Types

Point Feature Types

Image feature detection is a building block of many computer vision tasks, such as image
registration, tracking, and object detection. The Computer Vision Toolbox includes a variety of
functions for image feature detection. These functions return points objects that store information
specific to particular types of features, including (x,y) coordinates (in the Location property). You
can pass a points object from a detection function to a variety of other functions that require feature
points as inputs. The algorithm that a detection function uses determines the type of points object it
returns.

Functions That Return Points Objects

Points Object Returned By Type of Feature

cornerPoints detectFASTFeatures

Features from accelerated segment
test (FAST) algorithm

Uses an approximate metric to
determine corners. [1]

detectMinEigenFeatures
Minimum eigenvalue algorithm
Uses minimum eigenvalue metric to | COrners

determine corner locations. [4] Single-scale detection) o
Point tracking, image registration with little or

no scale change, corner detection in scenes of
human origin, such as streets and indoor
scenes.

detectHarrisFeatures
Harris-Stephens algorithm

More efficient than the minimum
eigenvalue algorithm. [3]

BRISKPoints detectBRISKFeatures
Binary Robust Invariant Scalable
Keypoints (BRISK) algorithm [6]

Corners

Multiscale detection

Point tracking, image registration, handles
changes in scale and rotation, corner detection
in scenes of human origin, such as streets and
indoor scenes

7-103

7 Object Detection

Points Object

Returned By

Type of Feature

Maximally stable extremal regions
(MSER) algorithm [7] [8] [9] [10]

SURFPoints detectSURFFeatures e el
Speeded-up robust features (SURF) '
algorithm [11]
Blobs
Multiscale detection
Object detection and image registration with
scale and rotation changes
ORBPoints detectORBFeatures
Oriented FAST and Rotated BRIEF
(ORB) method [13]
Corners
Multi-scale detection
Point tracking, image registration, handles
changes in rotation, corner detection in scenes
of human origin, such as streets and indoor
scenes
KAZEPoints detectKAZEFeatures
KAZE is not an acronym, but a
name derived from the Japanese
word kaze, which means wind. The
reference is to the flow of air ruled
by nonlinear processes on a large | Multi-scale blob features
scale. [12]
Reduced blurring of object boundaries
MSERRegions detectMSERFeatures

Regions of uniform intensity

Multi-scale detection

Registration, wide baseline stereo calibration,
text detection, object detection. Handles
changes to scale and rotation. More robust to
affine transforms in contrast to other
detectors.

7-104

Point Feature Types

Functions That Accept Points Objects

Function

Description

relativeCameraPose

Compute relative rotation and translation between camera

poses

estimateFundamentalMatrix

Estimate fundamental matrix from corresponding points in

stereo images

estimateGeometricTransform

Estimate geometric transform from matching point pairs

estimateUncalibratedRectification

Uncalibrated stereo rectification

extractFeatures

Extract interest point descriptors

Method

Feature Vector

BRISK

The function sets the Orientation
property of the validPoints output object
to the orientation of the extracted features,
in radians.

FREAK

The function sets the Orientation
property of the validPoints output object
to the orientation of the extracted features,
in radians.

SURF

The function sets the Orientation
property of the validPoints output object
to the orientation of the extracted features,
in radians.

When you use an MSERRegions object with
the SURF method, the Centroid property
of the object extracts SURF descriptors.
The Axes property of the object selects the
scale of the SURF descriptors such that the
circle representing the feature has an area
proportional to the MSER ellipse area. The
scale is calculated as
1/4*sqrt((majorAxes/2) .*
(minorAxes/2)) and saturated to 1.6, as
required by the SURFPoints object.

7-105

7 Object Detection

Function

Description

KAZE

Non-linear pyramid-based features.

The function sets the Orientation
property of the validPoints output object
to the orientation of the extracted features,
in radians.

When you use an MSERRegions object with
the KAZE method, the Location property
of the object is used to extract KAZE
descriptors.

The Axes property of the object selects the
scale of the KAZE descriptors such that the
circle representing the feature has an area
proportional to the MSER ellipse area.

ORB

The function does not set the
Orientation property of the
validPoints output object to the
orientation of the extracted features. By
default, the Orientation property of
validPoints is set to the Orientation
property of the input ORBPoints object.

Block

Simple square neighbhorhood.

The Block method extracts only the
neighborhoods fully contained within the
image boundary. Therefore, the output,
validPoints, can contain fewer points
than the input POINTS.

Auto

The function selects the Method based on
the class of the input points and
implements:

The FREAK method for a cornerPoints
input object.

The SURF method for a SURFPoints or
MSERRegions input object.

The FREAK method for a BRISKPoints
input object.

The ORB method for a ORBPoints input
object.

For an M-by-2 input matrix of [x y]
coordinates, the function implements the
Block method.

extractHOGFeatures

Extract histogram of oriented gradients (HOG) features

insertMarker

Insert markers in image or video

showMatchedFeatures

Display corresponding feature points

7-106

Point Feature Types

Function Description
triangulate 3-D locations of undistorted matching points in stereo
images
undistortPoints Correct point coordinates for lens distortion
References

[1] Rosten, E., and T. Drummond, “Machine Learning for High-Speed Corner Detection.” 9th
European Conference on Computer Vision. Vol. 1, 2006, pp. 430-443.

[2] Mikolajczyk, K., and C. Schmid. “A performance evaluation of local descriptors.” IEEE
Transactions on Pattern Analysis and Machine Intelligence. Vol. 27, Issue 10, 2005, pp. 1615-
1630.

[3] Harris, C., and M.]J. Stephens. “A Combined Corner and Edge Detector.” Proceedings of the 4th
Alvey Vision Conference. August 1988, pp. 147-152.

[4] Shi,]., and C. Tomasi. “Good Features to Track.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. June 1994, pp. 593-600.

[5] Tuytelaars, T., and K. Mikolajczyk. “Local Invariant Feature Detectors: A Survey.” Foundations and
Trends in Computer Graphics and Vision. Vol. 3, Issue 3, 2007, pp. 177-280.

[6] Leutenegger, S., M. Chli, and R. Siegwart. “BRISK: Binary Robust Invariant Scalable Keypoints.”
Proceedings of the IEEE International Conference. ICCV, 2011.

[7] Nister, D., and H. Stewenius. "Linear Time Maximally Stable Extremal Regions." Lecture Notes in
Computer Science. 10th European Conference on Computer Vision. Marseille, France: 2008,
no. 5303, pp. 183-196.

[8] Matas,]J., O. Chum, M. Urba, and T. Pajdla. "Robust wide-baseline stereo from maximally stable
extremal regions." Proceedings of British Machine Vision Conference. 2002, pp. 384-396.

[9] Obdrzalek D., S. Basovnik, L. Mach, and A. Mikulik. "Detecting Scene Elements Using Maximally
Stable Colour Regions." Communications in Computer and Information Science. La Ferte-
Bernard, France: 2009, Vol. 82 CCIS (2010 12 01), pp 107-115.

[10] Mikolajczyk, K., T. Tuytelaars, C. Schmid, A. Zisserman, T. Kadir, and L. Van Gool. "A Comparison
of Affine Region Detectors." International Journal of Computer Vision. Vol. 65, No. 1-2,
November, 2005, pp. 43-72.

[11] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. “SURF:Speeded Up Robust Features.” Computer
Vision and Image Understanding (CVIU).Vol. 110, No. 3, 2008, pp. 346-359.

[12] Alcantarilla, PFE, A. Bartoli, and A.J. Davison. "KAZE Features", ECCV 2012, Part VI, LNCS 7577
pp. 214, 2012

[13] Rublee, E., V. Rabaud, K. Konolige and G. Bradski. "ORB: An efficient alternative to SIFT or

SURE." In Proceedings of the 2011 International Conference on Computer Vision, 2564-2571.
Barcelona, Spain, 2011.

7-107

7 Object Detection

[14] Rosten, E., and T. Drummond. "Fusing Points and Lines for High Performance Tracking,"
Proceedings of the IEEE International Conference on Computer Vision, Vol. 2 (October 2005):
pp. 1508-1511.

See Also

More About

. Local Feature Detection and Extraction on page 7-109

See Also

Related Examples

. “Object Detection in a Cluttered Scene Using Point Feature Matching”

7-108

Local Feature Detection and Extraction

Local Feature Detection and Extraction

Local features and their descriptors, which are a compact vector representations of a local
neighborhood, are the building blocks of many computer vision algorithms. Their applications include
image registration, object detection and classification, tracking, and motion estimation. Using local
features enables these algorithms to better handle scale changes, rotation, and occlusion. The
Computer Vision Toolbox provides the FAST, Harris, ORB, and Shi & Tomasi methods for detecting
corner features, and the SURF, KAZE, and MSER methods for detecting blob features. The toolbox
includes the SURFE, KAZE, FREAK, BRISK, ORB, and HOG descriptors. You can mix and match the
detectors and the descriptors depending on the requirements of your application.

What Are Local Features?

Local features refer to a pattern or distinct structure found in an image, such as a point, edge, or
small image patch. They are usually associated with an image patch that differs from its immediate
surroundings by texture, color, or intensity. What the feature actually represents does not matter, just
that it is distinct from its surroundings. Examples of local features are blobs, corners, and edge
pixels.

Example 7.1. Example of Corner Detection

I = imread('circuit.tif');

corners = detectFASTFeatures(I, 'MinContrast',0.1);
J = insertMarker(I,corners, 'circle');

imshow(J)

Benefits and Applications of Local Features

Local features let you find image correspondences regardless of occlusion, changes in viewing
conditions, or the presence of clutter. In addition, the properties of local features make them suitable
for image classification, such as in “Image Classification with Bag of Visual Words” on page 7-146.

Local features are used in two fundamental ways:

7-109

7 Object Detection

7-110

» To localize anchor points for use in image stitching or 3-D reconstruction.

* To represent image contents compactly for detection or classification, without requiring image
segmentation.

Application MATLAB Examples

Image registration and stitching “Feature Based Panoramic Image Stitching”

Object detection “Object Detection in a Cluttered Scene Using Point Feature
Matching”

Object recognition “Digit Classification Using HOG Features”

Object tracking “Face Detection and Tracking Using the KLT Algorithm”

Image category recognition “Image Category Classification Using Bag of Features”

Finding geometry of a stereo system “Uncalibrated Stereo Image Rectification”

3-D reconstruction “Structure From Motion From Two Views”, “Structure From
Motion From Multiple Views”

Image retrieval “Image Retrieval Using Customized Bag of Features”

What Makes a Good Local Feature?

Detectors that rely on gradient-based and intensity variation approaches detect good local features.
These features include edges, blobs, and regions. Good local features exhibit the following properties:

* Repeatable detections:
When given two images of the same scene, most features that the detector finds in both images
are the same. The features are robust to changes in viewing conditions and noise.

* Distinctive:
The neighborhood around the feature center varies enough to allow for a reliable comparison
between the features.

* Localizable:
The feature has a unique location assigned to it. Changes in viewing conditions do not affect its
location.

Feature Detection and Feature Extraction

Feature detection selects regions of an image that have unique content, such as corners or blobs. Use
feature detection to find points of interest that you can use for further processing. These points do
not necessarily correspond to physical structures, such as the corners of a table. The key to feature
detection is to find features that remain locally invariant so that you can detect them even in the
presence of rotation or scale change.

Feature extraction involves computing a descriptor, which is typically done on regions centered
around detected features. Descriptors rely on image processing to transform a local pixel
neighborhood into a compact vector representation. This new representation permits comparison
between neighborhoods regardless of changes in scale or orientation. Descriptors, such as SIFT or
SURE rely on local gradient computations. Binary descriptors, such as BRISK, ORB or FREAK, rely
on pairs of local intensity differences, which are then encoded into a binary vector.

Local Feature Detection and Extraction

Choose a Feature Detector and Descriptor

Select the best feature detector and descriptor by considering the criteria of your application and the
nature of your data. The first table helps you understand the general criteria to drive your selection.
The next two tables provide details on the detectors and descriptors available in Computer Vision

Toolbox.

Considerations for Selecting a Detector and Descriptor

Criteria

Suggestion

Type of features in your image

Use a detector appropriate for your data. For example, if your
image contains an image of bacteria cells, use the blob detector
rather than the corner detector. If your image is an aerial view
of a city, you can use the corner detector to find man-made
structures.

Context in which you are using the features:

* Matching key points
» Classification

The HOG, SURF, and KAZE descriptors are suitable for
classification tasks. In contrast, binary descriptors, such as
ORB, BRISK and FREAK, are typically used for finding point
correspondences between images, which are used for
registration.

Type of distortion present in your image

Choose a detector and descriptor that addresses the distortion
in your data. For example, if there is no scale change present,
consider a corner detector that does not handle scale. If your
data contains a higher level of distortion, such as scale and
rotation, then use SURF, ORB or KAZE feature detector and
descriptor. The SURF and the KAZE methods are
computationally intensive.

Performance requirements:

* Real-time performance required
* Accuracy versus speed

Binary descriptors are generally faster but less accurate than
gradient-based descriptors. For greater accuracy, use several
detectors and descriptors at the same time.

Choose a Detection Function Based on Feature Type

Detector Feature Type Function Scale Independent
FAST [1] Corner detectFASTFeatures No
Minimum eigenvalue |Corner detectMinEigenFeatures No
algorithm [4]

Corner detector [3] Corner detectHarrisFeatures No
SURF [11] Blob detectSURFFeatures Yes
KAZE [12] Blob detectKAZEFeatures Yes
BRISK [6] Corner detectBRISKFeatures Yes
MSER [8] Region with detectMSERFeatures Yes

uniform intensity
ORB [13] Corner detectORBFeatures No

Note Detection functions return objects that contain information about the features. The
extractHOGFeatures and extractFeatures functions use these objects to create descriptors.

7-111

7 Object Detection

Choose a Descriptor Method

Descriptor Binar |Function and Method Invariance Typical Use
y Scal [Rotatio|Finding Point Classificatio
e n Correspondence |n
s
HOG No extractHOGFeatures(l, ...) No No No Yes
LBP No extractLBPFeatures(l, ... No Yes No Yes
SURF No extractFeatures(I,points,'M|Yes |Yes Yes Yes
ethod','SURF')
KAZE No extractFeatures(I,points,'M|Yes |Yes Yes Yes
ethod','KAZE")
FREAK Yes extractFeatures(I,points,'M|Yes |Yes Yes No
ethod','FREAK')
BRISK Yes extractFeatures(I,points,'M|Yes |Yes Yes No
ethod','BRISK')
ORB Yes extractFeatures(I,points,'M|No |Yes Yes No
ethod','ORB')
* Block No extractFeatures(I,points,'M|No [No Yes Yes
A Simple pixel ethod','Block')
neighborhood
around a
keypoint
Note

* The extractFeatures function provides different extraction methods to best match the
requirements of your application. When you do not specify the 'Method' input for the
extractFeatures function, the function automatically selects the method based on the type of
input point class.

* Binary descriptors are fast but less precise in terms of localization. They are not suitable for
classification tasks. The extractFeatures function returns a binaryFeatures object. This
object enables the Hamming-distance-based matching metric used in the matchFeatures
function.

Use Local Features

Registering two images is a simple way to understand local features. This example finds a geometric
transformation between two images. It uses local features to find well-localized anchor points.

Display two images

The first image is the original image.

original = imread('cameraman.tif');

figure;

imshow(original);

7-112

Local Feature Detection and Extraction

The second image is the original image rotated and scaled.

scale = 1.3;
J = imresize(original,scale);

theta = 31;

distorted = imrotate(J, theta);
figure

imshow(distorted)

Detect matching features between the original and distorted image

Detecting the matching SURF features is the first step in determining the transform needed to
correct the distorted image.

ptsOriginal
ptsDistorted

detectSURFFeatures(original);
detectSURFFeatures(distorted);

Extract features and compare the detected blobs between the two images

The detection step found several roughly corresponding blob structures in both images. Compare the
detected blob features. This process is facilitated by feature extraction, which determines a local
patch descriptor.

[featuresOriginal,validPtsOriginall] =
extractFeatures(original, ptsOrlglnal)

[featuresDistorted,validPtsDistorted] =
extractFeatures(distorted,ptsDistorted);

It is possible that not all of the original points were used to extract descriptors. Points might have
been rejected if they were too close to the image border. Therefore, the valid points are returned in
addition to the feature descriptors.

The patch size used to compute the descriptors is determined during the feature extraction step. The
patch size corresponds to the scale at which the feature is detected. Regardless of the patch size, the
two feature vectors, featuresOriginal and featuresDistorted, are computed in such a way
that they are of equal length. The descriptors enable you to compare detected features, regardless of
their size and rotation.

Find candidate matches

Obtain candidate matches between the features by inputting the descriptors to the matchFeatures
function. Candidate matches imply that the results can contain some invalid matches. Two patches
that match can indicate like features but might not be a correct match. A table corner can look like a
chair corner, but the two features are obviously not a match.

indexPairs = matchFeatures(featuresOriginal, featuresDistorted);

Find point locations from both images

Each row of the returned indexPairs contains two indices of candidate feature matches between
the images. Use the indices to collect the actual point locations from both images.

matchedOriginal
matchedDistorted

validPtsOriginal(indexPairs(:,1));
validPtsDistorted(indexPairs(:,2));

7-113

7 Object Detection

7-114

Display the candidate matches

figure
showMatchedFeatures(original,distorted, matchedOriginal,matchedDistorted)
title('Candidate matched points (including outliers)')

Analyze the feature locations

If there are a sufficient number of valid matches, remove the false matches. An effective technique for
this scenario is the RANSAC algorithm. The estimateGeometricTransform function implements
M-estimator sample consensus (MSAC), which is a variant of the RANSAC algorithm. MSAC finds a
geometric transform and separates the inliers (correct matches) from the outliers (spurious matches).

[tform, inlierDistorted,inlierOriginal] =

estlmateGeometr1cTransf0rm(matchelestorted
matchedOriginal, 'similarity');

Display the matching points

figure

showMatchedFeatures(original,distorted,inlierOriginal,inlierDistorted)

title('Matching points (inliers only)"')

legend('ptsOriginal', 'ptsDistorted')

Verify the computed geometric transform

Apply the computed geometric transform to the distorted image.

outputView
recovered

imref2d(size(original));
imwarp(distorted,tform, 'OutputView', outputView);

Display the recovered image and the original image.

figure
imshowpair(original, recovered, 'montage’)

Image Registration Using Multiple Features

This example builds on the results of the "Use Local Features" example. Using more than one
detector and descriptor pair enables you to combine and reinforce your results. Multiple pairs are
also useful for when you cannot obtain enough good matches (inliers) using a single feature detector.

Load the original image.

original = imread('cameraman.tif');

figure;

imshow(original);

text(size(original,2),size(original,1l)+15,
'Image courtesy of Massachusetts Institute of Technology',
'FontSize',7, 'HorizontalAlignment', 'right');

Local Feature Detection and Extraction

Image courteay of Massachusetls Inatiute of Technology

Scale and rotate the original image to create the distorted image.

scale = 1.3;
J = imresize(original, scale);

theta = 31;

distorted = imrotate(J,theta);
figure

imshow(distorted)

7-115

7 Object Detection

Detect the features in both images. Use the BRISK detectors first, followed by the SURF detectors.

ptsOriginalBRISK = detectBRISKFeatures(original, 'MinContrast',0.01);
ptsDistortedBRISK = detectBRISKFeatures(distorted, 'MinContrast',0.01);
ptsOriginalSURF = detectSURFFeatures(original);

ptsDistortedSURF = detectSURFFeatures(distorted);

Extract descriptors from the original and distorted images. The BRISK features use the FREAK
descriptor by default.

[featuresOriginalFREAK,validPtsOriginalBRISK] = ...
extractFeatures(original, ptsOriginalBRISK) ;

[featuresDistortedFREAK, validPtsDistortedBRISK] = ...
extractFeatures(distorted,ptsDistortedBRISK);

[featuresOriginalSURF,validPtsOriginalSURF] = ...
extractFeatures(original,ptsOriginalSURF);

7-116

Local Feature Detection and Extraction

[featuresDistortedSURF,validPtsDistortedSURF] = ...
extractFeatures(distorted, ptsDistortedSURF);

Determine candidate matches by matching FREAK descriptors first, and then SURF descriptors. To
obtain as many feature matches as possible, start with detector and matching thresholds that are
lower than the default values. Once you get a working solution, you can gradually increase the
thresholds to reduce the computational load required to extract and match features.

indexPairsBRISK = matchFeatures(featuresOriginalFREAK, ...
featuresDistortedFREAK, 'MatchThreshold', 40, 'MaxRatio',0.8);

indexPairsSURF = matchFeatures(featuresOriginalSURF, featuresDistortedSURF);

Obtain candidate matched points for BRISK and SURF.

matched0OriginalBRISK
matchedDistortedBRISK

validPtsOriginalBRISK(indexPairsBRISK(:,1));
validPtsDistortedBRISK(indexPairsBRISK(:,2));

matchedOriginalSURF
matchedDistortedSURF

validPtsOriginalSURF(indexPairsSURF(:,1));
validPtsDistortedSURF(indexPairsSURF(:,2));

Visualize the BRISK putative matches.

figure

showMatchedFeatures(original,distorted,matchedOriginalBRISK, ...
matchedDistortedBRISK)

title('Putative matches using BRISK & FREAK')

legend('ptsOriginalBRISK', 'ptsDistortedBRISK")

7-117

7 Object Detection

Putative matches using BRISK & FREAK

O ptsOriginalBRISK
+ ptsDistorted BRISK

Combine the candidate matched BRISK and SURF local features. Use the Location property to
combine the point locations from BRISK and SURF features.

matchedOriginalXY = ...

[matchedOriginalSURF.Location; matchedOriginalBRISK.Location];
matchedDistortedXY = ...

[matchedDistortedSURF.Location; matchedDistortedBRISK.Location];

Determine the inlier points and the geometric transform of the BRISK and SURF features.

[tformTotal,inlierDistortedXY,inlierOriginalXY] = ...
estimateGeometricTransform(matchedDistortedXY, ...
matchedOriginalXY, 'similarity');

Display the results. The result provides several more matches than the example that used a single
feature detector.

figure
showMatchedFeatures(original,distorted,inlierOriginalXY,inlierDistortedXY)

7-118

Local Feature Detection and Extraction

title('Matching points using SURF and BRISK (inliers only)')
legend('ptsOriginal', 'ptsDistorted')

Matching points using SURF and BRISK (inliers only)

O ptsOriginal
ptsDistorted

Compare the original and recovered image.

outputView = imref2d(size(original));
recovered = imwarp(distorted,tformTotal, 'OutputView',outputView);
figure;

imshowpair(original, recovered, 'montage')

7-119

7 Object Detection

7-120

References

[1] Rosten, E., and T. Drummond. “Machine Learning for High-Speed Corner Detection.” 9th
European Conference on Computer Vision. Vol. 1, 2006, pp. 430-443.

[2] Mikolajczyk, K., and C. Schmid. “A performance evaluation of local descriptors.” IEEE
Transactions on Pattern Analysis and Machine Intelligence. Vol. 27, Issue 10, 2005, pp. 1615-
1630.

[3] Harris, C., and M.]. Stephens. “A Combined Corner and Edge Detector.” Proceedings of the 4th
Alvey Vision Conference. August 1988, pp. 147-152.

[4] Shi,]., and C. Tomasi. “Good Features to Track.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. June 1994, pp. 593-600.

[5] Tuytelaars, T., and K. Mikolajczyk. “Local Invariant Feature Detectors: A Survey.” Foundations and
Trends in Computer Graphics and Vision. Vol. 3, Issue 3, 2007, pp. 177-280.

[6] Leutenegger, S., M. Chli, and R. Siegwart. “BRISK: Binary Robust Invariant Scalable Keypoints.”
Proceedings of the IEEE International Conference. ICCV, 2011.

[7] Nister, D., and H. Stewenius. "Linear Time Maximally Stable Extremal Regions." 10th European
Conference on Computer Vision. Marseille, France: 2008, No. 5303, pp. 183-196.

[8] Matas,]J., O. Chum, M. Urba, and T. Pajdla. "Robust wide-baseline stereo from maximally stable
extremal regions."Proceedings of British Machine Vision Conference. 2002, pp. 384-396.

[9] Obdrzalek D., S. Basovnik, L. Mach, and A. Mikulik. "Detecting Scene Elements Using Maximally
Stable Colour Regions."Communications in Computer and Information Science. La Ferte-
Bernard, France: 2009, Vol. 82 CCIS (2010 12 01), pp. 107-115.

Local Feature Detection and Extraction

[10] Mikolajczyk, K., T. Tuytelaars, C. Schmid, A. Zisserman, T. Kadir, and L. Van Gool. "A Comparison
of Affine Region Detectors. "International Journal of Computer Vision. Vol. 65, No. 1-2,
November 2005, pp. 43-72 .

[11] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. “SURF: Speeded Up Robust Features.” Computer
Vision and Image Understanding (CVIU). Vol. 110, No. 3, 2008, pp. 346-359.

[12] Alcantarilla, PF, A. Bartoli, and A.J. Davison. "KAZE Features", ECCV 2012, Part VI, LNCS 7577
pp. 214, 2012

[13] Rublee, E., V. Rabaud, K. Konolige and G. Bradski. "ORB: An efficient alternative to SIFT or
SURE." In Proceedings of the 2011 International Conference on Computer Vision, 2564-2571.
Barcelona, Spain, 2011.

See Also

Related Examples

. “Detect BRISK Points in an Image and Mark Their Locations”
. “Find Corner Points in an Image Using the FAST Algorithm”
. “Find Corner Points Using the Harris-Stephens Algorithm”

. “Find Corner Points Using the Eigenvalue Algorithm”

. “Find MSER Regions in an Image”

. “Detect SURF Interest Points in a Grayscale Image”

. “Automatically Detect and Recognize Text in Natural Images”

. “Object Detection in a Cluttered Scene Using Point Feature Matching”

7-121

7 Object Detection

Train a Cascade Object Detector

In this section...

“Why Train a Detector?” on page 7-122

“What Kinds of Objects Can You Detect?” on page 7-122

“How Does the Cascade Classifier Work?” on page 7-122

“Create a Cascade Classifier Using the trainCascadeObjectDetector” on page 7-123
“Troubleshooting” on page 7-126

“Examples” on page 7-128

“Train Stop Sign Detector” on page 7-132

Why Train a Detector?

The vision.CascadeObjectDetector System object comes with several pretrained classifiers for
detecting frontal faces, profile faces, noses, eyes, and the upper body. However, these classifiers are
not always sufficient for a particular application. Computer Vision Toolbox provides the
trainCascadeObjectDetector function to train a custom classifier.

POSITIVE IMAGES Cascade Classifier
E_ I & a stage one
‘ T tra|nCascadeObjectDetector stage two vision.CascadeObjectDetector
function stage three System Object
NEGATIVE IMAGES
o stored as an XML file

7-122

What Kinds of Objects Can You Detect?

The Computer Vision Toolbox cascade object detector can detect object categories whose aspect ratio
does not vary significantly. Objects whose aspect ratio remains fixed include faces, stop signs, and
cars viewed from one side.

The vision.CascadeObjectDetector System object detects objects in images by sliding a window
over the image. The detector then uses a cascade classifier to decide whether the window contains
the object of interest. The size of the window varies to detect objects at different scales, but its aspect
ratio remains fixed. The detector is very sensitive to out-of-plane rotation, because the aspect ratio
changes for most 3-D objects. Thus, you need to train a detector for each orientation of the object.
Training a single detector to handle all orientations will not work.

How Does the Cascade Classifier Work?

The cascade classifier consists of stages, where each stage is an ensemble of weak learners. The
weak learners are simple classifiers called decision stumps. Each stage is trained using a technique
called boosting. Boosting provides the ability to train a highly accurate classifier by taking a weighted
average of the decisions made by the weak learners.

Train a Cascade Object Detector

Each stage of the classifier labels the region defined by the current location of the sliding window as
either positive or negative. Positive indicates that an object was found and negative indicates no
objects were found. If the label is negative, the classification of this region is complete, and the
detector slides the window to the next location. If the label is positive, the classifier passes the region
to the next stage. The detector reports an object found at the current window location when the final
stage classifies the region as positive.

The stages are designed to reject negative samples as fast as possible. The assumption is that the
vast majority of windows do not contain the object of interest. Conversely, true positives are rare and
worth taking the time to verify.

* A true positive occurs when a positive sample is correctly classified.
» A false positive occurs when a negative sample is mistakenly classified as positive.
* A false negative occurs when a positive sample is mistakenly classified as negative.

To work well, each stage in the cascade must have a low false negative rate. If a stage incorrectly
labels an object as negative, the classification stops, and you cannot correct the mistake. However,
each stage can have a high false positive rate. Even if the detector incorrectly labels a nonobject as
positive, you can correct the mistake in subsequent stages.

The overall false positive rate of the cascade classifier is f°, where f is the false positive rate per

stage in the range (0 1), and s is the number of stages. Similarly, the overall true positive rate is t°,
where t is the true positive rate per stage in the range (0 1]. Thus, adding more stages reduces the
overall false positive rate, but it also reduces the overall true positive rate.

Create a Cascade Classifier Using the trainCascadeObjectDetector

Cascade classifier training requires a set of positive samples and a set of negative images. You must
provide a set of positive images with regions of interest specified to be used as positive samples. You
can use the Image Labeler to label objects of interest with bounding boxes. The Image Labeler
outputs a table to use for positive samples. You also must provide a set of negative images from which
the function generates negative samples automatically. To achieve acceptable detector accuracy, set
the number of stages, feature type, and other function parameters.

7-123

7 Object Detection

- -
ltrain CascadeObjectDetect qﬂ
fx
.

J

stage one

L

stage two

L)

stage N

Setfunction _pa—mn___ﬂe-ib

Function computes the number ofpositive samples it needs.

Train Stage One Using:
- Caleulated number of positive samples, which isless than the the total number of user-provided positive samples.
- Generated negative samples from user-provided negative images.

Train Stage Twaoe
- Use stage one.
- Classify all positive samples. Discard samples missclassified as negatives.
- Of the remaining in positive samples, use the same aalculated number of positive samples.
- Generate negative samples by processing negative images with sliding window and using false-positive classified samples.

Train Stage M
- Use previous stages.
- Classify all positive samples. Discard samples missclassified as negatives.
- Of the remaining in positive samples, use the same oalculated number of positive samples.
- Genarate negative samples by processing negative images with sliding window and using false-positive classified samples.

Considerations when Setting Parameters

Select the function parameters to optimize the number of stages, the false positive rate, the true
positive rate, and the type of features to use for training. When you set the parameters, consider
these tradeoffs.

Condition Consideration

A large training set (in the thousands). Increase the number of stages and set a higher

false positive rate for each stage.

A small training set. Decrease the number of stages and set a lower

false positive rate for each stage.

To reduce the probability of missing an object. Increase the true positive rate. However, a high

true positive rate can prevent you from achieving
the desired false positive rate per stage, making
the detector more likely to produce false
detections.

To reduce the number of false detections. Increase the number of stages or decrease the

false alarm rate per stage.

Feature Types Available for Training

Choose the feature that suits the type of object detection you need. The
trainCascadeObjectDetector supports three types of features: Haar, local binary patterns (LBP),
and histograms of oriented gradients (HOG). Haar and LBP features are often used to detect faces
because they work well for representing fine-scale textures. The HOG features are often used to
detect objects such as people and cars. They are useful for capturing the overall shape of an object.
For example, in the following visualization of the HOG features, you can see the outline of the bicycle.

7-124

Train a Cascade Object Detector

P I T A |
* *

I A A)
1 - - > -
I & & + & & #

-
-
#
*
L
*
-
L
P

L T I I I
I & & ¥ % % & 4 ¥ & x« &
I % S S §F J &= & % % & »

L T T e T = " T T T Y Y
T T N R L I I I

P T RN O A T I
B OF F F % ow o=m wm o o® o & v ow

(A R

PP T A
I E RN T

" EEEEEEEE
@ B f e wm tm w

i s 3 |

I I T A

I B e
LI I B B D
* % | F & & W & # &
LU T

You might need to run the trainCascadeObjectDetector function multiple times to tune the
parameters. To save time, you can use LBP or HOG features on a small subset of your data. Training a
detector using Haar features takes much longer. After that, you can run the Haar features to see if
the accuracy improves.

Supply Positive Samples

To create positive samples easily, you can use the Image Labeler app. The Image Labeler provides
an easy way to label positive samples by interactively specifying rectangular regions of interest
(ROIs).

You can also specify positive samples manually in one of two ways. One way is to specify rectangular
regions in a larger image. The regions contain the ohjects of interest. The other approach is to crop
out the object of interest from the image and save it as a separate image. Then, you can specify the
region to be the entire image. You can also generate more positive samples from existing ones by
adding rotation or noise, or by varying brightness or contrast.

Supply Negative Images

Negative samples are not specified explicitly. Instead, the trainCascadeObjectDetector function
automatically generates negative samples from user-supplied negative images that do not contain
objects of interest. Before training each new stage, the function runs the detector consisting of the
stages already trained on the negative images. Any objects detected from these image are false
positives, which are used as negative samples. In this way, each new stage of the cascade is trained to
correct mistakes made by previous stages.

7-125

7 Object Detection

NEGATIVE IMAGES o
2 :> trained

7-126

discard image

stages
false-positive object detected

Use this detection as a negative sample for the next stage in the classifier

As more stages are added, the detector's overall false positive rate decreases, causing generation of
negative samples to be more difficult. For this reason, it is helpful to supply as many negative images
as possible. To improve training accuracy, supply negative images that contain backgrounds typically
associated with the objects of interest. Also, include negative images that contain nonobjects similar
in appearance to the objects of interest. For example, if you are training a stop-sign detector, include
negative images that contain road signs and shapes similar to a stop sign.

Choose the Number of Stages

There is a trade-off between fewer stages with a lower false positive rate per stage or more stages
with a higher false positive rate per stage. Stages with a lower false positive rate are more complex
because they contain a greater number of weak learners. Stages with a higher false positive rate
contain fewer weak learners. Generally, it is better to have a greater number of simple stages
because at each stage the overall false positive rate decreases exponentially. For example, if the false
positive rate at each stage is 50%, then the overall false positive rate of a cascade classifier with two
stages is 25%. With three stages, it becomes 12.5%, and so on. However, the greater the number of
stages, the greater the amount of training data the classifier requires. Also, increasing the number of
stages increases the false negative rate. This increase results in a greater chance of rejecting a
positive sample by mistake. Set the false positive rate (FalseAlarmRate) and the number of stages,
(NumCascadeStages) to yield an acceptable overall false positive rate. Then you can tune these two
parameters experimentally.

Training can sometimes terminate early. For example, suppose that training stops after seven stages,
even though you set the number of stages parameter to 20. It is possible that the function cannot
generate enough negative samples. If you run the function again and set the number of stages to
seven, you do not get the same result. The results between stages differ because the number of
positive and negative samples to use for each stage is recalculated for the new number of stages.

Training Time of Detector

Training a good detector requires thousands of training samples. Large amounts of training data can
take hours or even days to process. During training, the function displays the time it took to train
each stage in the MATLAB Command Window. Training time depends on the type of feature you
specify. Using Haar features takes much longer than using LBP or HOG features.

Troubleshooting
What if you run out of positive samples?

The trainCascadeObjectDetector function automatically determines the number of positive
samples to use to train each stage. The number is based on the total number of positive samples
supplied by the user and the values of the TruePositiveRate and NumCascadeStages parameters.

Train a Cascade Object Detector

The number of available positive samples used to train each stage depends on the true positive rate.
The rate specifies what percentage of positive samples the function can classify as negative. If a
sample is classified as a negative by any stage, it never reaches subsequent stages. For example,
suppose you set the TruePositiveRate to 0.9, and all of the available samples are used to train
the first stage. In this case, 10% of the positive samples are rejected as negatives, and only 90% of
the total positive samples are available for training the second stage. If training continues, then each
stage is trained with fewer and fewer samples. Each subsequent stage must solve an increasingly
more difficult classification problem with fewer positive samples. With each stage getting fewer
samples, the later stages are likely to overfit the data.

Ideally, use the same number of samples to train each stage. To do so, the number of positive samples
used to train each stage must be less than the total number of available positive samples. The only
exception is that when the value of TruePositiveRate times the total number of positive samples is
less than 1, no positive samples are rejected as negatives.

The function calculates the number of positive samples to use at each stage using the following
formula:

number of positive samples = floor(totalPositiveSamples /(1 + (NumCascadeStages - 1) * (1 -
TruePositiveRate)))

This calculation does not guarantee that the same number of positive samples are available for each
stage. The reason is that it is impossible to predict with certainty how many positive samples will be
rejected as negatives. The training continues as long as the number of positive samples available to
train a stage is greater than 10% of the number of samples the function determined automatically
using the preceding formula. If there are not enough positive samples the training stops and the
function issues a warning. The function also outputs a classifier consisting of the stages that it had
trained up to that point. If the training stops, you can add more positive samples. Alternatively, you
can increase TruePositiveRate. Reducing the number of stages can also work, but such reduction
can also result in a higher overall false alarm rate.

What to do if you run out of negative samples?

The function calculates the number of negative samples used at each stage. This calculation is done
by multiplying the number of positive samples used at each stage by the value of
NegativeSamplesFactor.

Just as with positive samples, there is no guarantee that the calculated number of negative samples
are always available for a particular stage. The trainCascadeObjectDetector function generates
negative samples from the negative images. However, with each new stage, the overall false alarm
rate of the cascade classifier decreases, making it less likely to find the negative samples.

The training continues as long as the number of negative samples available to train a stage is greater
than 10% of the calculated number of negative samples. If there are not enough negative samples,
the training stops and the function issues a warning. It outputs a classifier consisting of the stages
that it had trained up to that point. When the training stops, the best approach is to add more
negative images. Alternatively, you can reduce the number of stages or increase the false positive
rate.

7-127

7 Object Detection

Examples
Train a Five-Stage Stop-Sign Detector

This example shows you how to set up and train a five-stage, stop-sign detector, using 86 positive
samples. The default value for TruePositiveRate is 0.995.

Step 1: Load the positive samples data from a MAT-file. In this example, file names and bounding
boxes are contained in the array of structures labeled 'data’.

load('stopSigns.mat');
Step 2: Add the image directory to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox"', 'vision', 'visiondata', 'stopSignImages');
addpath(imDir);

Step 3: Specify the folder with negative images.

negativeFolder = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', 'nonStopSigns');

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector.xml',6data,negativeFolder, 'FalseAlarmRate',0.2, 'NumCascadeStages',5);

Computer Vision Toolbox software returns the following message:

Automatically =setting ObjectTrainingSize to [33, 32]
Using at most 86 of B& positive =ample=s per =stage
Using at most 172 negative samples per stage
Training stage 1 of S

Used 86 positive and 172 negative samples
Training =stage 2 of 5

Used 86 positive and 172 negative =samples
Training stage 3 of 5

Used 86 pos=sitive and 172 negative =amples
Training stage 4 of 5

Used 86 positive and 172 negative samples
Training stage 5 of 5

Used 86 positive and 172 negative =samples

Training complete

7-128

Train a Cascade Object Detector

All 86 positive samples were used to train each stage. This high rate occurs because the true positive
rate is very high relative to the number of positive samples.

Train a Five-Stage Stop-Sign Detector with a Decreased True Positive Rate

This example shows you how to train a stop-sign detector on the same data set as the first example,
(steps 1-3), but with the TruePositiveRate decreased to 0.98.

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector tpr@ 98.xml',data,negativeFolder,...
'FalseAlarmRate',0.2, 'NumCascadeStages', 5,...
'TruePositiveRate', 0.98);

Automatically =setting ObjectTrainingSize to [33, 32]
Using at most 79 of 86 positive =zample=s per =stage
Using at most 158 negative samples per stage
Training stage 1 of 5

Used 79 positive and 158 negative samples
Training =tage 2 of &

Used 79 positive and 158 negative samnples
Training stage 3 of 5

Used 79 positive and 158 negative samples
Training stage 4 of o

Used 79 positive and 158 negative samples
Training =tage 5 of 5

Used 79 positive and 85 negative =samples

Training complete

Only 79 of the total 86 positive samples were used to train each stage. This lowered rate occurs
because the true positive rate was low enough for the function to start rejecting some of the positive
samples as false negatives.

Train a Ten-Stage Stop-Sign Detector

This example shows you how to train a stop-sign detector on the same data set as the first example,
(steps 1-3), but with the number of stages increased to 10.

Step 4: Train the detector.

trainCascadeObjectDetector('stopSignDetector 10stages.xml', data,negativeFolder,...
'FalseAlarmRate',0.2, 'NumCascadeStages',10);

7-129

7 Object Detection

7-130

utomatically setting ObjectTrainingSize to [33, 32]

Using at most 86 of Bé& positive samples per stage

Using at mo=st 172 negative sample=s per =stage

Training stage 1 of lﬂtg

Used 86 positive and 172 negative =samples

Training stage 2 of 10

Used 86 positive and 172 negative sanmples

Training stage 3 of 10

Used 86 positive and 172 negative samples

Training stage 4 of 10

Used 86 positive and 172 negative =samples

Training stage 5 of 10

Used 86 positive and 172 negative sanmples

Training stage & of 10

Used 86 positive and 33 negative samples

Training stage 7 of 10

[eeiee it e it i st e s e s s s s s s s e snasanssnsmnnmnnsnsss Warning:

Unable to generate a sufficient number of negative sample=z for this stage.
Consider reducing the number of stages, reducing the false alarm rate

or adding more negative images.

Cannot find enough samples for training.
Training will halt and return cascade detector with & stages
Training complete

In this case, NegativeSamplesFactor was set to 2, therefore the number of negative samples used
to train each stage was 172. Notice that the function generated only 33 negative samples for stage 6
and was not able to train stage 7 at all. This condition occurs because the number of negatives in
stage 7 was less than 17, (roughly half of the previous number of negative samples). The function
produced a stop-sign detector with 6 stages, instead of the 10 previously specified. The resulting
overall false alarm rate is 0.27=1.28e-05, while the expected false alarm rate is 1.024e-07.

At this point, you can add more negative images, reduce the number of stages, or increase the false
positive rate. For example, you can increase the false positive rate, FalseAlarmRate, to 0.5. The
expected overall false-positive rate in this case is 0.0039.

Step 4: Train the detector.

Train a Cascade Object Detector

trainCascadeObjectDetector('stopSignDetector 10stages far® 5.xml',data,negativeFolder,...
'FalseAlarmRate',0.5, 'NumCascadeStages',10);

Automatically =setting ObjectTrainingSize to [33, 32]
Uszing at most 86 of 86 positive samples per stage
Uszing at most 172 negative samples per stage

Training =stage 1 of 10

Uzed 86 positive and 172 negative =samples

Training =stage 2 of 10 I
Uzed 86 positive and 172 negative =samples

Training stage 3 of 10

Used 86 pos=sitive and 172 negative =szamples

Training =stage 4 of 10

Uzed 86 positive and 172 negative =samples

Training =stage 5> of 10

Uzed 86 positive and 172 negative =samples

Training stage & of 10

Used 86 pos=sitive and 172 negative =samples

Training stage 7 of 10

Uzed 86 positive and 172 negative samples

Training =stage 8 of 10

Uszed 86 positive and 172 negative =samples

Training =tage 9 of 10

Very low fal=se alarm rate 0.000587108 reached in =tage.
Training will halt and return cascade detector with 8 stages

Training complete

This time the function trains eight stages before the threshold reaches the overall false alarm rate of
0.000587108 and training stops.

7-131

7 Object Detection

Train Stop Sign Detector

Load the positive samples data from a MAT file. The file contains a table specifying bounding boxes
for several object categories. The table was exported from the Training Image Labeler app.

Load positive samples.

load('stopSignsAndCars.mat');

Select the bounding boxes for stop signs from the table.

positivelnstances = stopSignsAndCars(:,1:2);

Add the image folder to the MATLAB path.

imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
'stopSignImages');

addpath(imDir);

Specify the folder for negative images.

negativeFolder = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', ...
'nonStopSigns');

Create an imageDatastore object containing negative images.
negativelmages = imageDatastore(negativeFolder);

Train a cascade object detector called 'stopSignDetector.xml' using HOG features. NOTE: The
command can take several minutes to run.

trainCascadeObjectDetector('stopSignDetector.xml',positiveInstances,
negativeFolder, 'FalseAlarmRate',0.1, 'NumCascadeStages',5);

Automatically setting ObjectTrainingSize to [35, 32]
Using at most 42 of 42 positive samples per stage
Using at most 84 negative samples per stage

--cascadeParams- -
Training stage 1 of 5

Used 42 positive and 84 negative samples
Time to train stage 1: 0 seconds

Training stage 2 of 5

Used 42 positive and 84 negative samples
Time to train stage 2: 1 seconds

Training stage 3 of 5

Used 42 positive and 84 negative samples
Time to train stage 3: 4 seconds

Training stage 4 of 5

Used 42 positive and 84 negative samples
Time to train stage 4: 11 seconds

7-132

Train a Cascade Object Detector

Training stage 5 of 5

Used 42 positive and 17 negative samples
Time to train stage 5: 17 seconds

Training complete
Use the newly trained classifier to detect a stop sign in an image.
detector = vision.CascadeObjectDetector('stopSignDetector.xml');
Read the test image.
img = imread('stopSignTest.jpg');
Detect a stop sign.
bbox = step(detector,img);
Insert bounding box rectangles and return the marked image.
detectedImg = insertObjectAnnotation(img, 'rectangle’,bbox, 'stop sign');
Display the detected stop sign.

figure; imshow(detectedImg);

Remove the image directory from the path.

rmpath(imDir);

7-133

7 Object Detection

See Also

More About
. “Get Started with the Image Labeler” on page 7-49

External Websites
. Cascade Trainer

7-134

https://www.mathworks.com/matlabcentral/fileexchange/39627-cascade-trainer--specify-ground-truth--train-a-detector

Train Optical Character Recognition for Custom Fonts

Train Optical Character Recognition for Custom Fonts

In this section...

“Open the OCR Trainer App” on page 7-135
“Train OCR” on page 7-135
“App Controls” on page 7-137

The optical character recognition (OCR) app trains the ocr function to recognize a custom language
or font. You can use this app to label character data interactively for OCR training and to generate an
OCR language data file for use with the ocr function.

Iﬁ.dd images| 4 Edit labels| 1 Train OCR | 1Veriﬁ,r Training

Open the OCR Trainer App

MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click I.AJ
the OCR app icon.

¢ MATLAB command prompt: Enter ocrTrainer.

Train OCR

In the OCR Trainer, click New Session to open the OCR Training Session Settings dialog box.

2 Under Output Settings, enter a name for the OCR language data file and choose the output
folder location for the file. The location you specify must be writable.

3 Under Labeling Method, either label the data manually or pre-label it using optical character
recognition. If you use OCR, you can select either the pre-installed English or Japanese language,
or you can download additional language support files.

Note To download a language support file, type visionSupportPackages in a MATLAB
Command Window. Alternatively, on the MATLAB Home tab, in the Environment section, click
Add-Ons > Get Add-Ons. Then use the search box to find “Computer Vision System Toolbox
OCR Language Data.”

4 Add images at any time during the training session. The trainer automatically segments the
images for OCR training. Inspect the results to verify expected text segmentation. To improve the
segmentation, pre-process your images using the Image Segmenter app. Once the images are
added, you can inspect segmentation results from the training image view.

7-135

7 Object Detection

7-136

Original Sogmented Text

A

53 163 123064946 :3 1NB36258
$324435744 1023693427117 |
B4208 | IBEST 1356087 153534
120969 191542120767643638
185694066392663 104 113675
19232306 I07363IE0IBNBIESS
2242890508909067SBBE 12 10
169349969136226546155550
1939384942 131160EIN0INNE22

EYE2 1879 1104 1BEOSN3 13259

To limit the OCR to a specific character set, select the Character set check box and add the
characters.

Note Use training images that contain text that you want OCR to recognize. Do not use training
images with only a few characters. OCR training works best if training images contain blocks of
many words. You can use the insertText function to automatically generate training images for
a known font.

I = zeros(500,500,3, 'uint8');

textLines = [
"some training text"
"even more stuff to learn"easy
|

lineYLocation = 50;

for i
I

1:numel (textLines)

insertText (I, [50 lineYLocation],char(textLines(i)),
'"Font', 'LucidaSansRegular’, ...

'FontSize',16, 'TextColor', 'white', ...
‘Box0Opacity',0);

% increment to next line
lineYLocation = lineYLocation + 20;

end

figure

imshow(I)

Remove any noisy images. To improve segmentation results, you can draw a region of interest to
select a portion of an image. The display shows the original image on the left and the edited one
on the right. When you are done, click Accept All.

Modify the extracted samples from the character view window.
» To correct samples, select a group of samples in the character view window and change the
labels using the Character Label field.

* To exclude a sample from training, right-click the sample and select the option to move that
sample to the Unknown category. Unknown samples are listed at the top of the data browser
window and are not used for training.

Train Optical Character Recognition for Custom Fonts

+ If the bounding box clipped a character, double-click the character and modify it in the image
it was extracted from.

4\ OCR Trainer - mylang - O *

l OCR TRAINER

_ = 5
w* O H = @ [b
MNew Open Save Add Settings Edit = Train = Generate

Session Session ¥ Session ¥ Images Box Functicn
FILE SETTINGS EDIT | TRAIN | EVALUATE

0 13 samples Character Label:
1 16 =amples
2 7 zamples
3 5 samples

|

Data browser Character view
window window

7 After correcting the samples, click Train. When the trainer completes training, the app creates
an OCR language data file and saves it to the folder you specified.

App Controls
Sessions

Starts a new session, opens a saved session, or adds a session to the current one. You can also save
and name the session. The sessions are saved as MAT files.

Add Images

Adds images. You can add images when you start a new session or after you accept the current
collection of images.

Settings

Set or change the font display.

Edit Box

Selects the image that contains the selected character, along with the bounding boxes. You can create

additional regions, merge, modify, or delete existing images. To delete an ROI, use the delete key.

7-137

7 Object Detection

7-138

Train

Creates an OCR data file from the session. To use the .traineddata file with the ocr function, set
the 'Language' property for the ocr function, and follow the directions for a custom language.

Generate Function

Creates an autogenerated evaluation function for verification of training results.

Note Before running the OCR Trainer app, check if your machine has only one Tesseract installation.
If there are multiple Tesseract installations, remove the extra installations and restart MATLAB to run
the OCR Trainer app. Otherwise, the app returns the error "Not enough input arguments" when you
click the Train button.

See Also
OCR Trainer | ocr

Troubleshoot ocr Function Results

Troubleshoot ocr Function Results

Performance Options with the ocr Function

If your ocr results are not what you expect, try one or more of the following options:

Increase image size 2-to-4 times larger.

If the characters in the image are too close together or their edges are touching, use morphology
to thin out the characters. Using morphology to thin out the characters separates the characters.

Use binarization to check for non-uniform lighting issues. Use the graythresh and imbinarize
functions to binarize the image. If the characters are not visible in the results of the binarization,
it indicates a potential non-uniform lighting issue. Try top hat, using the imtophat function, or
other techniques that deal with removing non-uniform illumination.

Use the region of interest roi option to isolate the text. Specify the roi manually or use text
detection.

If your image looks like a natural scene containing words, like a street scene, rather than a
scanned document, try setting the TextLayout property to either 'Block' or 'Word'.

See Also
graythresh | imbinarize | imtophat | ocr | ocrText | visionSupportPackages

More About

“Install Computer Vision Toolbox Add-on Support Files” on page 3-2

7-139

7 Object Detection

Create a Custom Feature Extractor

You can use the bag-of-features (BoF) framework with many different types of image features. To use
a custom feature extractor instead of the default speeded-up robust features (SURF) feature
extractor, use the CustomExtractor property of a bag0OfFeatures object.

Example of a Custom Feature Extractor

This example shows how to write a custom feature extractor function for bag0fFeatures. You can
open this example function file and use it as a template by typing the following command at the
MATLAB command prompt:

edit('exampleBagOfFeaturesExtractor.m')

» Step 1. Define the image sets.

» Step 2. Create a new extractor function file.

» Step 3. Preprocess the image.

» Step 4. Select a point location for feature extraction.
* Step 5. Extract features.

» Step 6. Compute the feature metric.

Define the set of images and labels

Read the category images and create image sets.

setDir = fullfile(toolboxdir('vision'),'visiondata', 'imageSets');

imds = imageDatastore(setDir, 'IncludeSubfolders',true, 'LabelSource’,...
'foldernames');

Create a new extractor function file

The extractor function must be specified as a function handle:

extractorFcn = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imgSets, 'CustomExtractor',extractorFcn)

exampleBagOfFeaturesExtractor is a MATLAB function. For example:

function [features, featureMetrics] = exampleBagOfFeaturesExtractor(img)

You can also specify the optional Location output:

function [features, featureMetrics,location] = exampleBagOfFeaturesExtractor(img)

The function must be on the path or in the current working folder.

Argument Input/Output Description

img

Input * Binary, grayscale, or truecolor image.

* The input image is from the image set that was originally passed
into bag0fFeatures.

7-140

Create a Custom Feature Extractor

Argument Input/Output Description
features Output * An M-by-N numeric matrix of image features, where M is the
number of features and N is the length of each feature vector.

* The feature length, N, must be greater than zero and be the
same for all images processed during the bag0OfFeatures
creation process.

* Ifyou cannot extract features from an image, supply an empty
feature matrix and an empty feature metrics vector. Use the
empty matrix and vector if, for example, you did not find any
keypoints for feature extraction.

* Numeric, real, and nonsparse.

featureMetrics |Output * An M-by-1 vector of feature metrics indicating the strength of
each feature vector.

* Used to apply the 'SelectStrongest' criteria in
bagOfFeatures framework.

* Numeric, real, and nonsparse.

location Output * An M-by-2 matrix of 1-based [x y] values.

The [x y] values can be fractional.
Numeric, real, and nonsparse.

Preprocess the image

Input images can require preprocessing before feature extraction. To extract SURF features and to
use the detectSURFFeatures or detectMSERFeatures functions, the images must be grayscale. If
the images are not grayscale, you can convert them using the rgb2gray function.

[height,width,numChannels]

if numChannels > 1

grayImage = rgb2gray(I);

else

grayImage = I;

end

size(I);

Select a point location for feature extraction

Use a regular spaced grid of point locations. Using the grid over the image allows for dense SURF
feature extraction. The grid step is in pixels.

gridStep = 8;

gridX = l:gridStep:width;
gridY = 1l:gridStep:height;
[x,y] = meshgrid(gridX,gridY);

gridLocations = [x(:) y(:)];

You can manually concatenate multiple SURFPoints objects at different scales to achieve multiscale
feature extraction.

multiscaleGridPoints =
SURFPoints(gridLocations, 'Scale',3.2);

[SURFPoints(gridLocations, 'Scale',1.6);

7-141

7 Object Detection

7-142

SURFPoints(gridLocations, 'Scale',4.8);
SURFPoints(gridLocations, 'Scale',6.4)];

Alternatively, you can use a feature detector, such as detectSURFFeatures or
detectMSERFeatures, to select point locations.

multiscaleSURFPoints = detectSURFFeatures(I);
Extract features

Extract features from the selected point locations. By default, bagOfFeatures extracts upright
SUREF features.

features = extractFeatures(grayImage,multiscaleGridPoints, 'Upright',true);
Compute the feature metric

The feature metrics indicate the strength of each feature. Larger metric values are assigned to
stronger features. Use feature metrics to identify and remove weak features before using
bagOfFeatures to learn the visual vocabulary of an image set. Use the metric that is suitable for
your feature vectors.

For example, you can use the variance of the SURF features as the feature metric.

featureMetrics = var(features,[],2);

If you used a feature detector for the point selection, then use the detection metric instead.

featureMetrics = multiscaleSURFPoints.Metric;

You can optionally return the feature location information. The feature location can be used for
spatial or geometric verification image search applications. See the “Geometric Verification Using
estimateGeometricTransform Function” example. The retrieveImages and indexImages functions
are used for content-based image retrieval systems.

if nargout > 2
varargout{l} = multiscaleGridPoints.Location;
end

Image Retrieval with Bag of Visual Words

Image Retrieval with Bag of Visual Words

You can use the Computer Vision Toolbox functions to search by image, also known as a content-
based image retrieval (CBIR) system. CBIR systems are used to retrieve images from a collection of
images that are similar to a query image. The application of these types of systems can be found in
many areas such as a web-based product search, surveillance, and visual place identification. First
the system searches a collection of images to find the ones that are visually similar to a query image.

The retrieval system uses a bag of visual words, a collection of image descriptors, to represent your
data set of images. Images are indexed to create a mapping of visual words. The index maps each
visual word to their occurrences in the image set. A comparison between the query image and the
index provides the images most similar to the query image. By using the CBIR system workflow, you
can evaluate the accuracy for a known set of image search results.

7-143

7 Object Detection

Create image set
imds =imageDatastore(imageFolder)

Use custom feature extractor
extractor = @yourCwnExtractor

|
Create bag of visual words

[imds =imageDatastore(trainingl rnagesFoIder‘J]Dptional
bag=bagOfF eatures(imds, CustomExtractor] extractor)

v v

Index images
imagelndex= indexImages(imds) imagelndex = index Images(imds, bag)

Type of feature for retrieval?

Search image set

imagelDs =retrieveImages(guerylmage, imagelndex)
[imagelDs, scores] =retrieveImages(guerylmage imagelndex)
[imagelDs, scores, imageWords] =retrieve Images(querylmage, imagelndex)

v

imagelndex wo] s [0

/ Wo I, Is1, l1oa, l1zo,
n I : Izs n
visual words : 23 | 18 n
; |
Wh-1 11, l73, loa, 233, .. 3 : 0
imagelDs

guery image

Retrieval System Workflow

1 Create image set that represents image features for retrieval. Use imageDatastore to
store the image data. Use a large number of images that represent various viewpoints of the
object. A large and diverse number of images helps train the bag of visual words and increases
the accuracy of the image search.

2 Type of feature. The indexImages function creates the bag of visual words using the speeded
up robust features (SURF). For other types of features, you can use a custom extractor, and then
use bag0fFeatures to create the bag of visual words. See the “Create Search Index Using
Custom Bag of Features” example.

7-144

Image Retrieval with Bag of Visual Words

You can use the original imgSet or a different collection of images for the training set. To use a
different collection, create the bag of visual words before creating the image index, using the
bagOfFeatures function. The advantage of using the same set of images is that the visual
vocabulary is tailored to the search set. The disadvantage of this approach is that the retrieval
system must relearn the visual vocabulary to use on a drastically different set of images. With an
independent set, the visual vocabulary is better able to handle the additions of new images into
the search index.

3 Index the images. The indexImages function creates a search index that maps visual words to
their occurrences in the image collection. When you create the bag of visual words using an
independent or subset collection, include the bag as an input argument to indexImages. If you
do not create an independent bag of visual words, then the function creates the bag based on the
entire imgSet input collection. You can add and remove images directly to and from the image
index using the addImages and removeImages methods.

4 Search data set for similar images. Use the retrieveImages function to search the image
set for images which are similar to the query image. Use the NumResults property to control the
number of results. For example, to return the top 10 similar images, set the ROI property to use
a smaller region of a query image. A smaller region is useful for isolating a particular object in an
image that you want to search for.

Evaluate Image Retrieval

Use the evaluateImageRetrieval function to evaluate image retrieval by using a query image
with a known set of results. If the results are not what you expect, you can modify or augment image
features by the bag of visual words. Examine the type of the features retrieved. The type of feature
used for retrieval depends on the type of images within the collection. For example, if you are
searching an image collection made up of scenes, such as beaches, cities, or highways, use a global
image feature. A global image feature, such as a color histogram, captures the key elements of the
entire scene. To find specific objects within the image collections, use local image features extracted
around object keypoints instead.

See Also

Related Examples
. “Image Retrieval Using Customized Bag of Features”

7-145

7 Object Detection

Image Classification with Bag of Visual Words

7-146

Use the Computer Vision Toolbox functions for image category classification by creating a bag of
visual words. The process generates a histogram of visual word occurrences that represent an image.
These histograms are used to train an image category classifier. The steps below describe how to
setup your images, create the bag of visual words, and then train and apply an image category
classifier.

Step 1: Set Up Image Category Sets

Organize and partition the images into training and test subsets. Use the imageDatastore function
to store images to use for training an image classifier. Organizing images into categories makes
handling large sets of images much easier. You can use the splitEachLabel function to split the
images into training and test data.

Read the category images and create image sets.

setDir = fullfile(toolboxdir('vision'), 'visiondata', 'imageSets');

imds = imageDatastore(setDir, 'IncludeSubfolders',true, 'LabelSource',...
'foldernames');

Separate the sets into training and test image subsets. In this example, 30% of the images are
partitioned for training and the remainder for testing.

[trainingSet, testSet] = splitEachLabel(imds,0.3, 'randomize');
S S s
ﬁ) \ » = =

P
g» < T
partition -’ . f
=4

testSets

imageSets

Step 2: Create Bag of Features

Create a visual vocabulary, or bag of features, by extracting feature descriptors from representative
images of each category.

The bagOfFeatures object defines the features, or visual words, by using the k-means clustering
(Statistics and Machine Learning Toolbox) algorithm on the feature descriptors extracted from
trainingSets. The algorithm iteratively groups the descriptors into k mutually exclusive clusters.
The resulting clusters are compact and separated by similar characteristics. Each cluster center
represents a feature, or visual word.

You can extract features based on a feature detector, or you can define a grid to extract feature
descriptors. The grid method may lose fine-grained scale information. Therefore, use the grid for
images that do not contain distinct features, such as an image containing scenery, like the beach.
Using speeded up robust features (or SURF) detector provides greater scale invariance. By default,
the algorithm runs the 'grid' method.

Image Classification with Bag of Visual Words

extract keypoints feature descriptors clustering vocabulary visual words

feature detection

o feature vector —igl B
R o o Eme
s —— R 68 5
ot - ,..:_:ﬂ:z 0lo Mhice
grid e ? o 8
S o =

This algorithm workflow analyzes images in their entirety. Images must have appropriate labels
describing the class that they represent. For example, a set of car images could be labeled cars. The
workflow does not rely on spatial information nor on marking the particular objects in an image. The
bag-of-visual-words technique relies on detection without localization.

Step 3: Train an Image Classifier With Bag of Visual Words

The trainImageCategoryClassifier function returns an image classifier. The function trains a
multiclass classifier using the error-correcting output codes (ECOC) framework with binary support
vector machine (SVM) classifiers. The trainImageCategoryClassfier function uses the bag of
visual words returned by the bagOfFeatures object to encode images in the image set into the
histogram of visual words. The histogram of visual words are then used as the positive and negative
samples to train the classifier.

1 Use the bag0OfFeatures encode method to encode each image from the training set. This
function detects and extracts features from the image and then uses the approximate nearest
neighbor algorithm to construct a feature histogram for each image. The function then
increments histogram bins based on the proximity of the descriptor to a particular cluster center.
The histogram length corresponds to the number of visual words that the bagOfFeatures object
constructed. The histogram becomes a feature vector for the image.

image approximate nearest neighbor feature histogram feature vector

word count

12345+
visual word index

2 Repeat step 1 for each image in the training set to create the training data.

7-147

7 Object Detection

7-148

; —P: %}bcsﬁs
& Lk
o ., & b
—p mugs
s 3
g‘} _.': &}hats
& Lk

3 Evaluate the quality of the classifier. Use the imageCategoryClassifier evaluate method to

test the classifier against the validation image set. The output confusion matrix represents the
analysis of the prediction. A perfect classification results in a normalized matrix containing 1s on
the diagonal. An incorrect classification results fractional values.

classify
—pp boat f —
— fEt X confusion maftrix
——) 02t J mug boat hat

' mug J mug 1
ﬂmug J hoat 2,1'3 1,!'3
—p mug v hat 1
P> hat

—_—hat 7
—_— it o

LQ’P Eﬂﬂ af

Step 4: Classify an Image or Image Set

Use the imageCategoryClassifier predict method on a new image to determine its category.

References

[1] Csurka, G., C. R. Dance, L. Fan,]J. Willamowski, and C. Bray. Visual Categorization with Bags of
Keypoints. Workshop on Statistical Learning in Computer Vision. ECCV 1 (1-22), 1-2.

See Also

Related Examples
. “Image Category Classification Using Bag of Features”
. “Image Retrieval Using Customized Bag of Features”

Motion Estimation and Tracking

* “Multiple Object Tracking” on page 8-2

* “Video Mosaicking” on page 8-5

* “Pattern Matching” on page 8-10
“Pattern Matching” on page 8-15

8 Motion Estimation and Tracking

Multiple Object Tracking

8-2

Tracking is the process of locating a moving object or multiple objects over time in a video stream.
Tracking an object is not the same as object detection. Object detection is the process of locating an
object of interest in a single frame. Tracking associates detections of an object across multiple
frames.

Tracking multiple objects requires detection, prediction, and data association.

* Detection: Detect objects of interest in a video frame.
* Prediction: Predict the object locations in the next frame.

* Data association: Use the predicted locations to associate detections across frames to form
tracks.

Detection

Selecting the right approach for detecting objects of interest depends on what you want to track and
whether the camera is stationary.

Detect Objects Using a Stationary Camera

To detect objects in motion with a stationary camera, you can perform background subtraction using
the vision.ForegroundDetector System object. The background subtraction approach works
efficiently but requires the camera to be stationary.

Detect Objects Using a Moving Camera

To detect objects in motion with a moving camera, you can use a sliding-window detection approach.
This approach typically works more slowly than the background subtraction approach. To detect and
track a specific category of object, use the System objects or functions described in the table.

Select A Detection Algorithm

Type of Object to Track Camera Functionality

Anything that moves Stationary vision.ForegroundDetector System
object™

Faces, eyes, nose, mouth, upper |Stationary, Moving |vision.CascadeObjectDetector System

body object

Pedestrians Stationary, Moving |vision.PeopleDetector System object

Custom object category Stationary, Moving |trainCascadeObjectDetector function
or

custom sliding window detector using
extractHOGFeatures and
selectStrongestBbox

Prediction

To track an object over time means that you must predict its location in the next frame. The simplest
method of prediction is to assume that the object will be near its last known location. In other words,
the previous detection serves as the next prediction. This method is especially effective for high

Multiple Object Tracking

frame rates. However, using this prediction method can fail when objects move at varying speeds, or
when the frame rate is low relative to the speed of the object in motion.

A more sophisticated method of prediction is to use the previously observed motion of the object. The
Kalman filter (vision.KalmanFilter) predicts the next location of an object, assuming that it
moves according to a motion model, such as constant velocity or constant acceleration. The Kalman
filter also takes into account process noise and measurement noise. Process noise is the deviation of
the actual motion of the object from the motion model. Measurement noise is the detection error.

To make configuring a Kalman filter easier, use configureKalmanFilter. This function sets up the
filter for tracking a physical object moving with constant velocity or constant acceleration within a
Cartesian coordinate system. The statistics are the same along all dimensions. If you need to
configure a Kalman filter with different assumptions, you need to construct the
vision.KalmanFilter object directly.

Data Association

Data association is the process of associating detections corresponding to the same physical object
across frames. The temporal history of a particular object consists of multiple detections, and is
called a track. A track representation can include the entire history of the previous locations of the
object. Alternatively, it can consist only of the object's last known location and its current velocity.

Detection to Track Cost Functions

To match a detection to a track, you must establish criteria for evaluating the matches. Typically, you
establish this criteria by defining a cost function. The higher the cost of matching a detection to a
track, the less likely that the detection belongs to the track. A simple cost function can be defined as
the degree of overlap between the bounding boxes of the predicted and detected objects. The
“Tracking Pedestrians from a Moving Car” example implements this cost function using the
bboxOverlapRatio function. You can implement a more sophisticated cost function, one that
accounts for the uncertainty of the prediction, using the distance function of the
vision.KalmanFilter object. You can also implement a custom cost function than can incorporate
information about the object size and appearance.

Elimination of Unlikely Matches

Gating is a method of eliminating highly unlikely matches from consideration, such as by imposing a
threshold on the cost function. An observation cannot be matched to a track if the cost exceeds a
certain threshold value. Using this threshold method effectively results in a circular gating region
around each prediction, where a matching detection can be found. An alternative gating technique is
to make the gating region large enough to include the k-nearest neighbors of the prediction.

Assign Detections to Track

Data association reduces to a minimum weight bipartite matching problem, which is a well-studied
area of graph theory. A bipartite graph represents tracks and detections as vertices. It also represents
the cost of matching a detection and a track as a weighted edge between the corresponding vertices.

The assignDetectionsToTracks function implements the Munkres' variant of the Hungarian
bipartite matching algorithm. Its input is the cost matrix, where the rows correspond to tracks and
the columns correspond to detections. Each entry contains the cost of assigning a particular
detection to a particular track. You can implement gating by setting the cost of impossible matches to
infinity.

8-3

8 Motion Estimation and Tracking

8-4

Track Management

Data association must take into account the fact that new objects can appear in the field of view, or
that an object being tracked can leave the field of view. In other words, in any given frame, some
number of new tracks might need to be created, and some number of existing tracks might need to be
discarded. The assignDetectionsToTracks function returns the indices of unassigned tracks and
unassigned detections in addition to the matched pairs.

One way of handling unmatched detections is to create a new track from each of them. Alternatively,
you can create new tracks from unmatched detections greater than a certain size, or from detections
that have certain locations or appearance. For example, if the scene has a single entry point, such as
a doorway, then you can specify that only unmatched detections located near the entry point can
begin new tracks, and that all other detections are considered noise.

Another way of handling unmatched tracks is to delete any track that remain unmatched for a certain
number of frames. Alternatively, you can specify to delete an unmatched track when its last known
location is near an exit point.

See Also

assignDetectionsToTracks | bboxOverlapRatio | configureKalmanFilter |
extractHOGFeatures | selectStrongestBbox | trainCascadeObjectDetector |
vision.CascadeObjectDetector | vision.ForegroundDetector |vision.KalmanFilter |
vision.PeopleDetector | vision.PointTracker

Related Examples

. “Tracking Pedestrians from a Moving Car”
. “Using Kalman Filter for Object Tracking”
. “Motion-Based Multiple Object Tracking”

More About
. “Train a Cascade Object Detector” on page 7-122

External Websites
. Detect and Track Multiple Faces

https://www.mathworks.com/matlabcentral/fileexchange/47105-detect-and-track-multiple-faces

Video Mosaicking

Video Mosaicking

This example shows how to create a mosaic from a video sequence. Video mosaicking is the process
of stitching video frames together to form a comprehensive view of the scene. The resulting mosaic
image is a compact representation of the video data. The Video Mosaicking block is often used in
video compression and surveillance applications.

This example illustrates how to use the Corner Detection block, the Estimate Geometric
Transformation block, the Projective Transform block, and the Compositing block to create a mosaic
image from a video sequence.

Example Model

The following figure shows the Video Mosaicking model:

Video Mosaicking .

Real Video

" Image
_Q\\o-—b- Mode » | Pisi Pts1 |—P TForm
_O . TFem Mosaic P Mosaic
Synthetic videa Switch Start c Loc B Fl= Pi=2 Pts2 N%—:;;T:r?:;e Infier
S i
change video source. ’—.

Image

Image

Caorner Matching

R

Mosaicking

Display

Copyright 2007-2011 The MathWorks, Inc.

The Input subsystem loads a video sequence from either a file, or generates a synthetic video
sequence. The choice is user defined. First, the Corner Detection block finds points that are matched
between successive frames by the Corner Matching subsystem. Then the Estimate Geometric
Transformation block computes an accurate estimate of the transformation matrix. This block uses
the RANSAC algorithm to eliminate outlier input points, reducing error along the seams of the output
mosaic image. Finally, the Mosaicking subsystem overlays the current video frame onto the output
image to generate a mosaic.

Input Subsystem

The Input subsystem can be configured to load a video sequence from a file, or to generate a
synthetic video sequence.

8 Motion Estimation and Tracking

N Sample enable

b r
I I
Image 1 Image -
] f—
» rReBw | (2)
. - 1 b
Size 2 Resat . ! intensity I
Read Image Synthetic Video
Load image only at the beginning of simulation Generation
Cor—1
Mode
O — ()
p{ Mo > Image
11111
r
4
Image !] _\
Select Every g JIERD
5th Frame Start
Ri=sat g P
Video From File Frame Rata

Dowmeampling

If you choose to use a video sequence from a file, you can reduce computation time by processing
only some of the video frames. This is done by setting the downsampling rate in the Frame Rate
Downsampling subsystem.

If you choose a synthetic video sequence, you can set the speed of translation and rotation, output
image size and origin, and the level of noise. The output of the synthetic video sequence generator
mimics the images captured by a perspective camera with arbitrary motion over a planar surface.

Corner Matching Subsystem

The subsystem finds corner features in the current video frame in one of three methods. The example
uses Local intensity comparison (Rosen & Drummond), which is the fastest method. The other
methods available are the Harris corner detection (Harris & Stephens) and the Minimum Eigenvalue
(Shi & Tomasi).

7

MNum

8-6

>
Lkt
— S €D
»U 5 ¥ B Il Pts1
Idx of matching points Matching points
1 Pts_ci #{F1 Dis in current frame in current frame
Match L[T >
w1 - s v/
~ i o - s Fre2
for{ ...} - |
>l_':_—|—> F2 Idx of matching points Matching paints
M1 in previous frame in previous frame
Num N > - o HZ N a
L - max
Calculate Distances. e Num
Calowlate Features hetween featuree Min Point Mumber) Just to
Find Bast Matches for Projective Transform silent warning

between the features
n the current and previous frames

Video Mosaicking

The Corner Matching Subsystem finds the number of corners, location, and their metric values. The
subsystem then calculates the distances between all features in the current frame with those in the
previous frame. By searching for the minimum distances, the subsystem finds the best matching

features.

Mosaicking Subsystem

By accumulating transformation matrices between consecutive video frames, the subsystem
calculates the transformation matrix between the current and the first video frame. The subsystem
then overlays the current video frame on to the output image. By repeating this process, the
subsystem generates a mosaic image.

Inliar

Mumber of
Inliers Threshold

@—»]_.

<

OR

imege

Warp
»| TForm

Reset Reset signal
Restart mosaicking when the video started
or when no enough inliers were found.
ayel3) »
Initial Values
—
(Zr—— El_’ Matrix »
| Muttiply
2
Accumulate

Transformations

T e

N
*i

Le 17

Image1

Binary
Imaga2 mask

L)

Select One
Color Plane

Mask

(1)

Mozaic

Stitch Video Frames

The subsystem is reset when the video sequence rewinds or when the Estimate Geometric
Transformation block does not find enough inliers.

Video Mosaicking Using Synthetic Video

Real Video

o/o_'

Synthetic video Switch

Video Mosaicking .

Imags

| Pist

Mode

Start

Diouble-click the Switch to
change video source.

Input

Pis2

Loc
Cormer
Detection

Pe{ Num Num

Count

Pis1

Pis2

Mum

TFom

Monreflactive
Similarity

Corner Matching

TFarm

Image

Mosaic

\—P Image

P Mosaic

Inlier

Resat

-
:

Caopyright 2007-2011 The MathWorks, Inc.

Maosaicking

The Corners window shows the corner locations in the current video frame.

Fis

Display

8 Motion Estimation and Tracking

Video Mosaicking Using Captured Video

The Corners window shows the corner locations in the current video frame.

8-8

Video Mosaicking

The Mosaic window shows the resulting mosaic image.

8-9

8 Motion Estimation and Tracking

Pattern Matching

8-10

This example shows how to use the 2-D normalized cross-correlation for pattern matching and target
tracking. The example uses predefined or user specified target and number of similar targets to be
tracked. The normalized cross correlation plot shows that when the value exceeds the set threshold,
the target is identified.

Introduction

In this example you use normalized cross correlation to track a target pattern in a video. The pattern
matching algorithm involves the following steps:

* The input video frame and the template are reduced in size to minimize the amount of
computation required by the matching algorithm.

* Normalized cross correlation, in the frequency domain, is used to find a template in the video
frame.

* The location of the pattern is determined by finding the maximum cross correlation value.
Initialize Parameters and Create a Template

Initialize required variables such as the threshold value for the cross correlation and the
decomposition level for Gaussian Pyramid decomposition.

threshold = single(0.99);
level =

Prepare a video file reader.

hVideoSrc = VideoReader('vipboard.mp4');

Specify the target image and number of similar targets to be tracked. By default, the example uses a
predefined target and finds up to 2 similar patterns. You can set the variable useDefaultTarget to
false to specify a new target and the number of similar targets to match.

useDefaultTarget = true;
[Img, numberOfTargets, target image] =
videopattern_ gettemplate(useDefaultTarget)

% Downsample the target image by a predefined factor. You do this
% to reduce the amount of computation needed by cross correlation.
target image = single(target image);

target dim nopyramid = size(target image);

target image gp = multilevelPyramid(target image, level);

target _energy = sqrt(sum(target image gp(:)."2));

% Rotate the target image by 180 degrees, and perform zero padding so that
% the dimensions of both the target and the input image are the same.
target image rot = imrotate(target image gp, 180);

[rt, ct] = size(target image rot);

Img single(Img);

Img multilevelPyramid(Img, level);

[ri, ci]= size(Img);

r mod = 2%nextpow2(rt + ri);

c_mod = 2%nextpow2(ct + ci);

target image p = [target image rot zeros(rt, c mod-ct)];

target image p = [target image p; zeros(r _mod-rt, c mod)];

Pattern Matching

% Compute the 2-D FFT of the target image
target fft = fft2(target image p);

% Initialize constant variables used in the processing loop.
target size = repmat(target dim nopyramid, [numberOfTargets, 11);
gain = 2™ (level);

Im p = zeros(r_mod, c mod, 'single');
C ones = ones(rt, ct, 'single');

Used for zero padding
Used to calculate mean using conv

)
©
)

©

Create a System object to calculate the local maximum value for the normalized cross correlation.

hFindMax = vision.LocalMaximaFinder (
'Threshold', single(-1),
'"MaximumNumLocalMaxima', numberOfTargets, .
‘NeighborhoodSize', floor(size(target image gp)/2)*2 - 1);

Create a System object to display the tracking of the pattern.

sz = get(0, 'ScreenSize'");

pos = [20 sz(4)-400 400 300];

hROIPattern = vision.VideoPlayer('Name', 'Overlay the ROI on the target',
'Position', pos);

Initialize figure window for plotting the normalized cross correlation value
hPlot = videopatternplots('setup',numberOfTargets, threshold);

Search for a Template in Video

Create a processing loop to perform pattern matching on the input video. This loop uses the System
objects you instantiated above. The loop is stopped when you reach the end of the input file, which is
detected by the VideoReader object.

while hasFrame(hVideoSrc)
Im = rgb2gray(im2single(readFrame(hVideoSrc)));

% Reduce the image size to speed up processing
Im gp = multilevelPyramid(Im, level);

% Frequency domain convolution.

Im p(1l:ri, l:ci) = Im gp; % Zero-pad
img fft = fft2(Im p);

corr freq = img fft .* target fft;
corrQutput f = ifft2(corr_freq);
corrOutput f = corrQutput f(rt:ri, ct:ci);

% Calculate image energies and block run tiles that are size of
% target template.

IUT energy = (Im gp)."2;

IUT = conv2(IUT energy, C ones, 'valid');

IUT = sqrt(IUT);

% Calculate normalized cross correlation.
norm _Corr f = (corrQutput f) ./ (IUT * target _energy);
xyLocation = step(hFindMax, norm Corr f);

% Calculate linear indices.

8-11

8 Motion Estimation and Tracking

linear index = sub2ind([ri-rt, ci-ct]+1, xylLocation(:,2),...
xyLocation(:,1));

norm Corr_f linear = norm _Corr f(:);

norm Corr_value = norm Corr_f linear(linear index);

detect = (norm _Corr_value > threshold);

target roi = zeros(length(detect), 4);

ul corner = (gain.*(xyLocation(detect, :)-1))+1;

target roi(detect, :) = [ul _corner, fliplr(target size(detect, :))1;

% Draw bounding box.
Imf = insertShape(Im, 'Rectangle', target roi, 'Color', ‘'green');
% Plot normalized cross correlation.
videopatternplots('update',hPlot,norm Corr value);
step(hROIPattern, Imf);

end

snapnow

[)

% Function to compute pyramid image at a particular level.
function outI = multilevelPyramid(inI, level)

I = inI;

outl = I;

for i=1l:level
outl = impyramid(I, 'reduce');
I = outI;

end

end

8-12

Pattern Matching

0.998

0.996

0.994 -

0.992

0.99

posst o

0.986

8-13

8 Motion Estimation and Tracking

8-14

EO'-,'ErIe';.'thE ROl on the target | = || [=] || 23 |

File Toaols View Playback Help o

|/ q | oo v

]

Processing RGE:240x350 340

Summary

This example shows use of Computer Vision Toolbox™ to find a user defined pattern in a video and
track it. The algorithm is based on normalized frequency domain cross correlation between the target
and the image under test. The video player window displays the input video with the identified target
locations. Also a figure displays the normalized correlation between the target and the image which is
used as a metric to match the target. As can be seen whenever the correlation value exceeds the
threshold (indicated by the blue line), the target is identified in the input video and the location is
marked by the green bounding box.

Appendix
The following helper functions are used in this example.

» videopattern gettemplate.m
* videopatternplots.m

Pattern Matching

Pattern Matching

This example shows how to use the 2-D normalized cross-correlation for pattern matching and target
tracking.

Double-click the Edit Parameters block to select the number of similar targets to detect. You can also
change the pyramiding factor. By increasing it, you can match the target template to each video
frame more quickly. Changing the pyramiding factor might require you to change the Threshold
value.

Additionally, you can double-click the Correlation Method switch to specify the domain in which to
perform the cross-correlation. The relative size of the target to the input video frame and the
pyramiding factor determine which domain computation is faster.

Example Model

The following figure shows the Pattern Matching model:

Pattern Matching .
o 1
n

NOT .
vipboard.mp4 | - > Wideo
V: 240360, 30,0 fps | [mage Under Test (IUT) - X-co HImage \iawer
Cross-correlation
 target Match metric —FIEI
Match metric
Target
{Double-click
to select new target)
single{0.%9) threshald Target ROI | target RO
Threshold
Frequency
C—
- _o\o—p- Methaod T | IUT
O—»=
Spatial Cormmalation
Method sahli
= Target detection and tracking Highlight the targst
| 332854
(D Edit
Parameters

Copyright 2003-2008 The MathWaorks, Inc.

8-15

8 Motion Estimation and Tracking

Pattern Matching Results

The Match metric window shows the variation of the target match metrics. The model determines
that the target template is present in a video frame when the match metric exceeds a threshold (cyan

line).

-
File Tools View Simulation Help

G- QPO | =-aQa-E-F&-

Sample based T=4.000

Ready

The Cross-correlation window shows the result of cross-correlating the target template with a video
frame. Large values in this window correspond to the locations of the targets in the input image.

(4] = =] X
File Tools View Simulation Help u

Ok & a E3]| a5
® k> ®| S
-

| _
-
[S0xT4 -T=4.I:I;IEI

Resady

8-16

Pattern Matching

The Overlay window shows the locations of the targets by highlighting them with rectangular regions
of interest (ROIs). These ROIs are present only when the targets are detected in the video frame.

TETIELTRR IR LERLLE L]
[F L

8-17

Geometric Transformations

9 Geometric Transformations

Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods

In this section...

“Nearest Neighbor Interpolation” on page 9-2
“Bilinear Interpolation” on page 9-3

“Bicubic Interpolation” on page 9-3

Nearest Neighbor Interpolation

For nearest neighbor interpolation, the block uses the value of nearby translated pixel values for the
output pixel values.

For example, suppose this matrix,

123
456
789

represents your input image. You want to translate this image 1.7 pixels in the positive horizontal
direction using nearest neighbor interpolation. The Translate block's nearest neighbor interpolation
algorithm is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 1.7 pixels to the right.

Tramshled zero-padded matrix
0 1 0o 2 1 3 2 0 3 0]
0 4 (L1 4 6 B 0 G 0]
o 7 0 8 T 09 g8 0 9 0 0
I I 1.7 pixek |

Original 2era-padded matrix

2 Create the output matrix by replacing each input pixel value with the translated value nearest to
it. The result is the following matrix:

00123
00456
00789

Note You wanted to translate the image by 1.7 pixels, but this method translated the image by 2
pixels. Nearest neighbor interpolation is computationally efficient but not as accurate as bilinear or
bicubic interpolation.

9-2

Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods

Bilinear Interpolation

For bilinear interpolation, the block uses the weighted average of two translated pixel values for each
output pixel value.

For example, suppose this matrix,

123
456
789

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bilinear interpolation. The Translate block's bilinear interpolation algorithm is
illustrated by the following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

Transhted zero-podded matrix
0 1 1 2 2 3 3 0 0
1] 4 4] b 6 5] 0 1]
1] 7 T] L] 9 9 0 1]
Original zero-padded mairix 0.5 pinel

2 Create the output matrix by replacing each input pixel value with the weighted average of the
translated values on either side. The result is the following matrix where the output matrix has
one more column than the input matrix:

056152515
2 4555 3
3.57.568545

Bicubic Interpolation

For bicubic interpolation, the block uses the weighted average of four translated pixel values for each
output pixel value.

For example, suppose this matrix,

123
456
789

represents your input image. You want to translate this image 0.5 pixel in the positive horizontal
direction using bicubic interpolation. The Translate block's bicubic interpolation algorithm is
illustrated by the following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

9-3

9 Geometric Transformations

9-4

Transhited zero-podded mairix

o T N =
[— A — . — |
o T N =
B
-
= I B -]
e o e
® &
L= = - T -
[— A — . — |
o T N =
[— A — . — |
o T N =

Original zero-padded mairix | |

0.5 pixel

Create the output matrix by replacing each input pixel value with the weighted average of the
two translated values on either side. The result is the following matrix where the output matrix
has one more column than the input matrix:

0.375 1.5 3 1.625

1.875 4.875 6.375 3.125

3.375 8.25 9.75 4.625

Filters, Transforms, and Enhancements

* “Adjust the Contrast of Intensity Images” on page 10-2
* “Adjust the Contrast of Color Images” on page 10-6

“Remove Salt and Pepper Noise from Images” on page 10-10
“Sharpen an Image” on page 10-14

10 Filters, Transforms, and Enhancements

Adjust the Contrast of Intensity Images

10-2

This example shows you how to modify the contrast in two intensity images using the Contrast
Adjustment and Histogram Equalization blocks.

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity

Image From File Computer Vision Toolbox > Sources 2

Contrast Adjustment Computer Vision Toolbox > Analysis & 1
Enhancement

Histogram Equalization |Computer Vision Toolbox > Analysis & 1
Enhancement

Video Viewer Computer Vision Toolbox > Sinks 4

Place the blocks listed in the table above into your new model.

Use the Image From File block to import the first image into the Simulink model. Set the File
name parameter to pout.tif.

4 Use the Image From Filel block to import the second image into the Simulink model. Set the File

name parameter to tire.tif.
5 Use the Contrast Adjustment block to modify the contrast in pout.tif. Set the Adjust pixel

values from parameter to Range determined by saturating outlier pixels. This block

adjusts the contrast of the image by linearly scaling the pixel values between user-specified
upper and lower limits.

6 Use the Histogram Equalization block to modify the contrast in tire.tif. Accept the default
parameters. This block enhances the contrast of images by transforming the values in an
intensity image so that the histogram of the output image approximately matches a specified
histogram.

7 Use the Video Viewer blocks to view the original and modified images. Accept the default
parameters.

8 Connect the blocks as shown in the following figure.

Adjust the Contrast of Intensity Images

bi ex_vision_adjust_contrast_intensity E\@
File Edit View Display Diagram Simulation Analysis Tools Help
=] isi] | === -~ ik
B-8 a ES-EH AP @ D @ -
| ex_vision_adjust_contrast_intensity |
® ex_vision_adjust_contrast_intensity b
Video
EI —| Image Vi
=
Video Viewer
. Contrast Video
pout.tif Image 3 Adjustment | Image Vi
Image From File Contrast Adjustment Video Views 1
— Histogram Video
tire. tif Image: - Equalization | Image Wi
Image From File1 Histogram Equalization Vides Viewem 2
Video
L— | Image Vi
Video Viewsr 3
>
Ready 100% FixedStepDiscrete

9 Set the configuration parameters. Open the Configuration Parameters dialog box from the
Modeling tab by selecting Model Settings > Model Settings. Set the parameters as follows:

* Solver pane, Stop time =0

Solver pane, Type = Fixed-step
Solver pane, Solver = Discrete (no continuous states)

10-3

10 Filters, Transforms, and Enhancements

10 Run the model.

The results appear in the Video Viewer windows.

B video Viewer =R

File Tools View Simulation Help N
= B OB RS oo -
®P®| @

Ready [:251x240 T=0.000

10-4

Adjust the Contrast of Intensity Images

o

n Video Viewer2 E@

File Tools View Simulation Help o
& B O R S| ook -
oIX ICE

Ready [:205x232 [T=0.000

In this example, you used the Contrast Adjustment block to linearly scale the pixel values in
pout.tif between new upper and lower limits. You used the Histogram Equalization block to
transform the values in tire.tif so that the histogram of the output image approximately matches
a uniform histogram. For more information, see the Contrast Adjustment and Histogram Equalization
reference pages.

10-5

10 Filters, Transforms, and Enhancements

Adjust the Contrast of Color Images

10-6

This example shows you how to modify the contrast in color images using the Histogram Equalization
block.

ex_vision adjust contrast color.mdl

1

Use the following code to read in an indexed RGB image, shadow.tif, and convert it to an RGB
image. The model provided above already includes this code in file > Model Properties >
Model Properties > InitFcn, and executes it prior to simulation.

[X map] = imread('shadow.tif');
shadow = ind2rgb(X,map);

Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From Workspace |Computer Vision Toolbox > Sources 1
Color Space Conversion |Computer Vision Toolbox > Conversions 2
Histogram Equalization |Computer Vision Toolbox > Analysis & 1
Enhancement
Video Viewer Computer Vision Toolbox > Sinks 2
Constant Simulink > Sources 1
Divide Simulink > Math Operations 1
Product Simulink > Math Operations 1

Place the blocks listed in the table above into your new model.

Use the Image From Workspace block to import the RGB image from the MATLAB workspace
into the Simulink model. Set the block parameters as follows:

* Value = shadow

* Image signal = Separate color signals

Use the Color Space Conversion block to separate the luma information from the color
information. Set the block parameters as follows:

* Conversion = sR'G'B' to L*a*b*

» Image signal = Separate color signals

Because the range of the L* values is between 0 and 100, you must normalize them to be
between zero and one before you pass them to the Histogram Equalization block, which expects
floating point input in this range.

Use the Constant block to define a normalization factor. Set the Constant value parameter to
100.

Use the Divide block to normalize the L* values to be between 0 and 1. Accept the default
parameters.

Use the Histogram Equalization block to modify the contrast in the image. This block enhances
the contrast of images by transforming the luma values in the color image so that the histogram
of the output image approximately matches a specified histogram. Accept the default parameters.

Use the Product block to scale the values back to be between the 0 to 100 range. Accept the
default parameters.

matlab:ex_vision_adjust_contrast_color.mdl

Adjust the Contrast of Color Images

10

the block parameters as follows:

¢ Conversion = L*a*b* to sR'G'B'

* Image signal = Separate color signals

11

Image signal parameter to Separate Color Signals from the File menu.

Use the Color Space Conversionl block to convert the values back to the sR'G'B' color space. Set

Use the Video Viewer blocks to view the original and modified images. For each block, set the

12 Connect the blocks as shown in the following figure.
bﬁ ex_vision_adjust_contrast_color EI@
File Edit View Display Diagram Simulation Analysis Ceode Tools Help
HE = (el ' i
-8 = EO-2 4P &~ 0 Normal) | @~ @t
| ex_vision_adjust_contrast_color
® |&|ex_vision_adjust_contrast_color -
Q 100
E3 Constant L
x | Histogram - Ed
=1 + Equalizaticn
Diwide Froduct
R o= L= Histogram Equslization - e N
n SRGE to | . Latto , Video
shadow G (G L ab* a) SRGE G'—mG Viewsr
B | B b* | b B' —m
Image From Works pace Color Space Conversion Color Space Conversionl Video Viewer
—» R
o Video
g Viewer
B
Video Viewer 1
b 1 3
Ready 100% FiedStepDiscrete

13 Set the configuration parameters. Open the Configuration Parameters dialog box from the
Modeling tab by selecting Model Settings > Model Settings. Set the parameters as follows:

* Solver pane, Stop time = 0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = Discrete (no continuous states)

14 Run the model.

As shown in the following figure, the model displays the original image in the Video Viewerl

window.

10-7

10 Filters, Transforms, and Enhancements

o =

B Video Viewerl == o <

File Tools View Simulation Help o
& R 08 %S o -
Ob® s

Ready |RGB:223x298 |T=0.000

As the next figure shows, the model displays the enhanced contrast image in the Video Viewer
window.

10-8

Adjust the Contrast of Color Images

o "

u\."ideu'fmer E@

File Tools View Simulation Help o
& B O R S| ook -
oIX ICE

Ready |RGB:223x298 |T=0.000

In this example, you used the Histogram Equalization block to transform the values in a color image
so that the histogram of the output image approximately matches a uniform histogram. For more
information, see the Histogram Equalization reference page.

10-9

10 Filters, Transforms, and Enhancements

Remove Salt and Pepper Noise from Images

Median filtering is a common image enhancement technique for removing salt and pepper noise.
Because this filtering is less sensitive than linear techniques to extreme changes in pixel values, it
can remove salt and pepper noise without significantly reducing the sharpness of an image. In this
topic, you use the Median Filter block to remove salt and pepper noise from an intensity image:

ex_vision remove noise

1 Define an intensity image in the MATLAB workspace and add noise to it by typing the following
at the MATLAB command prompt:

I= double(imread('circles.png'));
I= imnoise(I, 'salt & pepper',0.02);

Iis a 256-by-256 matrix of 8-bit unsigned integer values.

The model provided with this example already includes this code in file>Model
Properties>Model Properties>InitFcn, and executes it prior to simulation.

2 To view the image this matrix represents, at the MATLAB command prompt, type

imshow(I)

Figure 1 =R (=

File Edi Viev Inse Too Deskt Windt Hel ~

N de | k| ARG HL- 7

-

The intensity image contains noise that you want your model to eliminate.
3 Create a Simulink model, and add the blocks shown in the following table.

Block Library Quantity
Image From Workspace |Computer Vision Toolbox > Sources 1
Median Filter Computer Vision Toolbox > Filtering 1

10-10

matlab:ex_vision_remove_noise

Remove Salt and Pepper Noise from Images

Block Library Quantity

Video Viewer Computer Vision Toolbox > Sinks 2

Use the Image From Workspace block to import the noisy image into your model. Set the Value
parameter to I.

Use the Median Filter block to eliminate the black and white speckles in the image. Use the
default parameters.

The Median Filter block replaces the central value of the 3-by-3 neighborhood with the median
value of the neighborhood. This process removes the noise in the image.

Use the Video Viewer blocks to display the original noisy image, and the modified image. Images
are represented by 8-bit unsigned integers. Therefore, a value of 0 corresponds to black and a
value of 255 corresponds to white. Accept the default parameters.

Connect the blocks as shown in the following figure.

o

'F"i EX_VIsion_remove_noise *

File

Edit View Display Diagram Simulation Analysis Code Tools Help

-8 =

EeEH AP 2 @0 O H-

| eX_vision_remove_noise |

= @a_visinn_remnve_nuise
&
3 | |
| Image] r"1E'.dlan | Image V.Ide{}
— Filter WViewesr
Image From Workspace Median Fitter S —
| Image ::j:;
Video Viewer
b
Ready 100% FixedStepDiscrete
8 Set the configuration parameters. Open the Configuration Parameters dialog box from the
Modeling tab by selecting Model Settings > Model Settings. Set the parameters as follows:
* Solver pane, Stop time = 0
* Solver pane, Type = Fixed-step
* Solver pane, Solver = Discrete (no continuous states)
9 Run the model.

10-11

10 Filters, Transforms, and Enhancements

10-12

The original and filtered images are displayed.

-

B Video Viewer =N ol ==
File Tools View Simulation Help &
= RO %S| Ed % -

® > @ o

Ready |1256x256 [T=0.000

Remove Salt and Pepper Noise from Images

-

B video Viewerl o =[S
File Tools View Simulation Help o
= RO %S| Ed % -

® @ o

Ready [:256x256 [T=0.000

You have used the Median Filter block to remove noise from your image. For more information about
this block, see the Median Filter block reference page in the Computer Vision Toolbox Reference.

10-13

10 Filters, Transforms, and Enhancements

Sharpen an Image

10-14

To sharpen a color image, you need to make the luma intensity transitions more acute, while
preserving the color information of the image. To do this, you convert an R'G'B' image into the Y'CbCr
color space and apply a highpass filter to the luma portion of the image only. Then, you transform the
image back to the R'G'B' color space to view the results. To blur an image, you apply a lowpass filter
to the luma portion of the image. This example shows how to use the 2-D FIR Filter block to sharpen
an image. The prime notation indicates that the signals are gamma corrected.

ex_vision sharpen_image

1 Define an R'G'B' image in the MATLAB workspace. To read in an R'G'B' image from a PNG file
and cast it to the double-precision data type, at the MATLAB command prompt, type

I= im2double(imread('peppers.png'));

I is a 384-by-512-by-3 array of double-precision floating-point values. Each plane of this array
represents the red, green, or blue color values of the image.

The model provided with this example already includes this code in file>Model
Properties>Model Properties>InitFcn, and executes it prior to simulation.

2 To view the image this array represents, type this command at the MATLAB command prompt:

imshow(I)

matlab:ex_vision_sharpen_image

Sharpen an Image

u Figurel E'@

File Edit View Insert Tools Desktop Window Help o

n_bllﬁlgx‘é [:3 :{\-:{\-@@@ﬂv'ﬁa DIE m O

Now that you have defined your image, you can create your model.
Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From Workspace |Computer Vision Toolbox > Sources 1
Color Space Conversion |Computer Vision Toolbox > Conversions 2
2-D FIR Filter Computer Vision Toolbox > Filtering 1
Video Viewer Computer Vision Toolbox > Sinks 1

Use the Image From Workspace block to import the R'G'B' image from the MATLAB workspace.
Set the parameters as follows:

* Main pane, Value = I

* Main pane, Image signal = Separate color signals

The block outputs the R', G', and B' planes of the I array at the output ports.

The first Color Space Conversion block converts color information from the R'G'B' color space to
the Y'CbCr color space. Set the Image signal parameter to Separate color signals

Use the 2-D FIR Filter block to filter the luma portion of the image. Set the block parameters as
follows:

10-15

10 Filters, Transforms, and Enhancements

* Coefficients = fspecial('unsharp')

* Output size = Same as input port I

* Padding options = Symmetric

* Filtering based on = Correlation

The fspecial('unsharp') command creates two-dimensional highpass filter coefficients
suitable for correlation. This highpass filter sharpens the image by removing the low frequency
noise in it.

The second Color Space Conversion block converts the color information from the Y'CbCr color
space to the R'G'B' color space. Set the block parameters as follows:

* Conversion = Y'CbCr to R'G'B'
* Image signal = Separate color signals

Use the Video Viewer block to automatically display the new, sharper image in the Video Viewer
window when you run the model. Set the Image signal parameter to Separate color
signals, by selecting File > Image Signal.

Connect the blocks as shown in the following figure.

10-16

| 2-DFIR
Filter
2-D FIR Filter

R Ll b b R g

R'G'B" to Y ChCr to Video
= Bl = _ . = |

: G > G veeor P i e G v Viewer

al= Cr | Cr B g

Image From Workspace Color Space Conversion Color Space Conversion Video Viewer

10 Set the configuration parameters. Open the Configuration Parameters dialog box from the

Modeling tab by selecting Model Settings > Model Settings. Set the parameters as follows:

* Solver pane, Stop time = 0
* Solver pane, Type = Fixed-step
* Solver pane, Solver = Discrete (no continuous states)

11 Run the model.

A sharper version of the original image appears in the Video Viewer window.

Sharpen an Image

o

u Video Viewer

File Tools View Simulation Help

&SRO %S| Lo

Ob® =

Ready

|RGB:384x512 [T=0.000

To blur the image, double-click the 2-D FIR Filter block. Set Coefficients parameter to
fspecial('gaussian',[15 15],7) and then click OK. The fspecial('gaussian', [15

15],7) command creates two-dimensional Gaussian lowpass filter coefficients. This lowpass
filter blurs the image by removing the high frequency noise in it.

In this example, you used the Color Space Conversion and 2-D FIR Filter blocks to sharpen an image

For more information, see the Color Space Conversion and 2-D FIR Filter, and fspecial reference
pages.

10-17

Statistics and Morphological Operations

* “Correct Nonuniform Illumination” on page 11-2
* “Count Objects in an Image” on page 11-8

11 statistics and Morphological Operations

Correct Nonuniform lllumination

11-2

Global threshold techniques, which are often the first step in object measurement, cannot be applied
to unevenly illuminated images. To correct this problem, you can change the lighting conditions and
take another picture, or you can use morphological operators to even out the lighting in the image.
Once you have corrected for nonuniform illumination, you can pick a global threshold that delineates
every object from the background. In this topic, you use the Opening block to correct for uneven
lighting in an intensity image:

You can open the example model by typing
ex_vision correct uniform
on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity
Image From File Computer Vision Toolbox > Sources 1
Opening Computer Vision Toolbox > Morphological 1
Operations
Video Viewer Computer Vision Toolbox > Sinks 4
Constant Simulink > Sources 1
Sum Simulink > Math Operations 2
Data Type Conversion Simulink > Signal Attributes 1

2 Use the Image From File block to import the intensity image. Set the File name parameter to
rice.png. This image is a 256-by-256 matrix of 8-bit unsigned integer values.

3 Use the Video Viewer block to view the original image. Accept the default parameters.

Use the Opening block to estimate the background of the image. Set the Neighborhood or
structuring element parameter to strel('disk',15).

The strel object creates a circular STREL object with a radius of 15 pixels. When working with
the Opening block, pick a STREL object that fits within the objects you want to keep. It often
takes experimentation to find the neighborhood or STREL object that best suits your application.

5 Use the Video Viewerl block to view the background estimated by the Opening block. Accept the
default parameters.

6 Use the first Sum block to subtract the estimated background from the original image. Set the
block parameters as follows:
* Icon shape = rectangular
* List of signs = -+

7 Use the Video Viewer2 block to view the result of subtracting the background from the original
image. Accept the default parameters.

Use the Constant block to define an offset value. Set the Constant value parameter to 80.

9 Use the Data Type Conversion block to convert the offset value to an 8-bit unsigned integer. Set
the Output data type mode parameter to uints8.

10 Use the second Sum block to lighten the image so that it has the same brightness as the original
image. Set the block parameters as follows:

matlab:ex_vision_correct_uniform

Correct Nonuniform Illumination

* Icon shape = rectangular

* List of signs = ++
11 Use the Video Viewer3 block to view the corrected image. Accept the default parameters.
12 Connect the blocks as shown in the following figure.

'Pi ex_vision_correct_uniform * EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
=-8 8 @B 4P @-o > D -
o] EHE o =/ [EEEH
| ex_vision_correct_uniform |
® @a_vision_cnrrect_unifnrm hd
&,
El — Image :iide{} — Image :iide{} - Image :iide{}
—
Video Viewer Video Viewsr 1 Video Viewsr 2
rice.png Image - Open [i » "
————————————————— |+ Image ,:i'de{}
Image From File Opening
Video Viewsr 3
20 1 uintd
Constant Dats Type Conversion
»
Ready 100% FixedStepDiscrete

13 Open the Configuration Parameters dialog box from the Modeling tab by selecting Model
Settings > Model Settings. Set the Solver parameters as follows:

* Solver pane, Stop time =0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = discrete (no continuous states)
14 Run the model.

The original image appears in the Video Viewer window.

11-3

11 statistics and Morphological Operations

11-4

" B Video Viewer oo e |
File Tools View Simulation Help N
& B O R S| ook -

X I

Ready [:256x256 [T=0.000

The estimated background appears in the Video Viewerl window.

Correct Nonuniform Illumination

o 1

B Video Viewerl == o <

File Tools View Simulation Help o
& B OB ® S| oo -
QP ® ms

Ready [:256x256 [T=0.000

The image without the estimated background appears in the Video Viewer2 window.

11-5

11 statistics and Morphological Operations

o =

B Video Viewer2][-E S

File Tools View Simulation Help o
= 5] £, S5 & | E3l|100% v
®Pr® @

Ready [:256x256 [T=0.000

The preceding image is too dark. The Constant block provides an offset value that you used to
brighten the image.

The corrected image, which has even lighting, appears in the Video Viewer3 window. The
following image is shown at its true size.

11-6

Correct Nonuniform Illumination

B Video Viewer3 |- (]

File Tools View Simulation Help o
S 0|08 %0 o .
QP ® ms

Ready |I-256x256 [T=0.000

In this section, you have used the Opening block to remove irregular illumination from an image. For
more information about this block, see the Opening reference page. For related information, see the
Top-hat block reference page. For more information about STREL objects, see the strel object in the

Image Processing Toolbox documentation.

11-7

11 statistics and Morphological Operations

Count Objects in an Image

11-8

In this example, you import an intensity image of a wheel from the MATLAB workspace and convert it
to binary. Then, using the Opening and Label blocks, you count the number of spokes in the wheel.
You can use similar techniques to count objects in other intensity images. However, you might need to
use additional morphological operators and different structuring elements.

Note Running this example requires a DSP System Toolbox™ license.

You can open the example model by typing
ex _vision count objects
on the MATLAB command line.

1 Create a new Simulink model, and add to it the blocks shown in the following table.

Block Library Quantity

Image From File Computer Vision Toolbox > Sources 1

Opening Computer Vision Toolbox> Morphological 1
Operations

Label Computer Vision Toolbox > Morphological 1
Operations

Video Viewer Computer Vision Toolbox > Sinks 2

Constant Simulink > Sources 1

Relational Operator Simulink > Logic and Bit Operations 1

Display Simulink > Sinks 1

2 Use the Image From File block to import your image. Set the File name parameter to
testpatl.png. This is a 256-by-256 matrix image of 8-bit unsigned integers.

3 Use the Constant block to define a threshold value for the Relational Operator block. Set the
Constant value parameter to 200.
Use the Video Viewer block to view the original image. Accept the default parameters.

5 Use the Relational Operator block to perform a thresholding operation that converts your
intensity image to a binary image. Set the Relational Operator parameter to <.

If the input to the Relational Operator block is less than 200, its output is 1; otherwise, its output
is 0. You must threshold your intensity image because the Label block expects binary input. Also,
the objects it counts must be white.

6 Use the Opening block to separate the spokes from the rim and from each other at the center of
the wheel. Use the default parameters.

The strel object creates a circular STREL object with a radius of 5 pixels. When working with
the Opening block, pick a STREL object that fits within the objects you want to keep. It often
takes experimentation to find the neighborhood or STREL object that best suits your application.

Use the Video Viewerl1 block to view the opened image. Accept the default parameters.

Use the Label block to count the number of spokes in the input image. Set the Qutput parameter
to Number of labels.

matlab:ex_vision_count_objects

Count Objects in an Image

9 The Display block displays the number of spokes in the input image. Use the default parameters.

10 Connect the block as shown in the following figure.

-
J’i ex_visian_count_ol_

. _— .
File Edit View Display Diagram Simulation Analysis Code Help
=] (0 = ok bid
@" EE@"%'\DHD a 2 ()" g T
ex_vision_count_objects
= Ex_vision_count_objects hd
El B Image :iide-a
—
Video Viewer
testpat1.png Image - :
= » Cpen B Image :ilde-a
. Relational Operator
Image From File Opening
Video Viewer1
200
| BW Label Count bl:l
Constant
Display
Label
»
Ready 100% FicedStepDiscrete

11 Open the Configuration Parameters dialog box from the Modeling tab by selecting Model
Settings > Model Settings. Set the Solver parameters as follows:

* Solver pane, Stop time =0

* Solver pane, Type = Fixed-step

* Solver pane, Solver = discrete (no continuous states)

12 Run the model.

The original image appears in the Video Viewerl window. To view the image at its true size, right-

click the window and select Set Display To True Size.

11-9

11 statistics and Morphological Operations

-

‘l.l’ideu‘u’ieu.rer E@

File Tools View Simulation Help o
= RO %S | oo -
©Pr®| @

+* 4

AL L
ar ar

Ready [:256x256 [T=0.000

The opened image appears in the Video Viewer window. The following image is shown at its true
size.

11-10

Count Objects in an Image

L

= RO | q & Ed % -

® > =% (@

Ready [:256x256

[T=0.000

Video Viewerl | = | E |&J
File Tools View Simulation Help o

&

As you can see in the preceding figure, the spokes are now separate white objects. In the model,

the Display block correctly indicates that there are 24 distinct spokes.

11-11

11 statistics and Morphological Operations

Pi ex_vision_count_objects EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
= [= "l (Pid
-8 & mme-2 40 b OB » (D) v @ v
| ex_vision_count_objects |
® |"a|ex_vision_count_objects -
@,
Vid
El ¥ Image Vil =0
—
Video Viewsr
testpatl.png Image - -
= e Open | Image :ilde{}
- Relational Operator
Image From File Cpening
Video Viewsr1
200
o Lacel counth— w7
Constant
Display
Label
»
Ready 100% FixedStepDiscrete

11-12

You have used the Opening and Label blocks to count the number of spokes in an image. For more
information about these blocks, see the Opening and Label block reference pages in the Computer
Vision Toolbox Reference. If you want to send the number of spokes to the MATLAB workspace, use
the To Workspace block in Simulink. For more information about STREL objects, see strel in the
Image Processing Toolbox documentation.

Fixed-Point Design

» “Fixed-Point Signal Processing” on page 12-2

» “Fixed-Point Concepts and Terminology” on page 12-4

* “Arithmetic Operations” on page 12-8

* “Fixed-Point Support for MATLAB System Objects” on page 12-15
* “Specify Fixed-Point Attributes for Blocks” on page 12-17

12 Fixed-Point Design

Fixed-Point Signal Processing

12-2

In this section...

“Fixed-Point Features” on page 12-2
“Benefits of Fixed-Point Hardware” on page 12-2

“Benefits of Fixed-Point Design with System Toolboxes Software” on page 12-2

Note To take full advantage of fixed-point support in System Toolbox software, you must install
Fixed-Point Designer™ software.

Fixed-Point Features

Many of the blocks in this product have fixed-point support, so you can design signal processing
systems that use fixed-point arithmetic. Fixed-point support in DSP System Toolbox software includes

* Signed two's complement and unsigned fixed-point data types

* Word lengths from 2 to 128 bits in simulation

* Word lengths from 2 to the size of a Long on the Simulink Coder C code-generation target
* Overflow handling and rounding methods

* C code generation for deployment on a fixed-point embedded processor, with Simulink Coder code
generation software. The generated code uses all allowed data types supported by the embedded
target, and automatically includes all necessary shift and scaling operations

Benefits of Fixed-Point Hardware

There are both benefits and trade-offs to using fixed-point hardware rather than floating-point
hardware for signal processing development. Many signal processing applications require low-power
and cost-effective circuitry, which makes fixed-point hardware a natural choice. Fixed-point hardware
tends to be simpler and smaller. As a result, these units require less power and cost less to produce
than floating-point circuitry.

Floating-point hardware is usually larger because it demands functionality and ease of development.
Floating-point hardware can accurately represent real-world numbers, and its large dynamic range
reduces the risk of overflow, quantization errors, and the need for scaling. In contrast, the smaller
dynamic range of fixed-point hardware that allows for low-power, inexpensive units brings the
possibility of these problems. Therefore, fixed-point development must minimize the negative effects
of these factors, while exploiting the benefits of fixed-point hardware; cost- and size-effective units,
less power and memory usage, and fast real-time processing.

Benefits of Fixed-Point Design with System Toolboxes Software

Simulating your fixed-point development choices before implementing them in hardware saves time
and money. The built-in fixed-point operations provided by the System Toolboxes software save time
in simulation and allow you to generate code automatically.

This software allows you to easily run multiple simulations with different word length, scaling,
overflow handling, and rounding method choices to see the consequences of various fixed-point

Fixed-Point Signal Processing

designs before committing to hardware. The traditional risks of fixed-point development, such as
quantization errors and overflow, can be simulated and mitigated in software before going to
hardware.

Fixed-point C code generation with System Toolbox software and Simulink Coder code generation
software produces code ready for execution on a fixed-point processor. All the choices you make in
simulation in terms of scaling, overflow handling, and rounding methods are automatically optimized
in the generated code, without necessitating time-consuming and costly hand-optimized code.

12-3

12 Fixed-Point Design

Fixed-Point Concepts and Terminology

In this section...

“Fixed-Point Data Types” on page 12-4
“Scaling” on page 12-5

“Precision and Range” on page 12-6

Fixed-Point Data Types

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of
bits (1's and 0's). The way hardware components or software functions interpret this sequence of 1's
and 0's is defined by the data type.

Binary numbers are represented as either floating-point or fixed-point data types. In this section, we
discuss many terms and concepts relating to fixed-point numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position of the binary point,
and the signedness of a number which can be signed or unsigned. Signed numbers and data types
can represent both positive and negative values, whereas unsigned numbers and data types can only
represent values that are greater than or equal to zero.

The position of the binary point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed or unsigned)
is shown below:

b1 b2 bs | by | by | Bo | By | By

MSB T LSB
binary point

where

* b, is the i*h binary digit.
* wl is the number of bits in a binary word, also known as word length.

* b, is the location of the most significant, or highest, bit (MSB). In signed binary numbers, this
bit is the sign bit which indicates whether the number is positive or negative.

* by is the location of the least significant, or lowest, bit (LSB). This bit in the binary word can
represent the smallest value. The weight of the LSB is given by:

weightLSB — 2—fractlonlength

where, fractionlength is the number of bits to the right of the binary point.

» Bits to the left of the binary point are integer bits and/or sign bits, and bits to the right of the
binary point are fractional bits. Number of bits to the left of the binary point is known as the
integer length. The binary point in this example is shown four places to the left of the LSB.
Therefore, the number is said to have four fractional bits, or a fraction length of four.

12-4

Fixed-Point Concepts and Terminology

Fixed-point data types can be either signed or unsigned.
Signed binary fixed-point numbers are typically represented in one of three ways:

* Sign/magnitude -- Representation of signed fixed-point or floating-point numbers. In the sign/
magnitude representation, one bit of a binary word is always the dedicated sign bit, while the
remaining bits of the word encode the magnitude of the number. Negation using sign/magnitude
representation consists of flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0.

* One's complement

* Two's complement -- Two's complement is the most common representation of signed fixed-point
numbers. See “Two's Complement” on page 12-8 for more information.

Unsigned fixed-point numbers can only represent numbers greater than or equal to zero.

Scaling

In [Slope Bias] representation, fixed-point numbers can be encoded according to the scheme
real-worldvalue = (slope x integer) + bias

where the slope can be expressed as

slope = slope ad justment x 28XPonent
The term slope adjustment is sometimes used as a synonym for fractional slope.

In the trivial case, slope = 1 and bias = 0. Scaling is always trivial for pure integers, such as int8, and
also for the true floating-point types single and double.

The integer is sometimes called the stored integer. This is the raw binary number, in which the binary
point assumed to be at the far right of the word. In System Toolboxes, the negative of the exponent is
often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number with zero
bias, only the slope affects the scaling. A fixed-point number that is only scaled by binary point
position is equivalent to a number in the Fixed-Point Designer [Slope Bias] representation that has a
bias equal to zero and a slope adjustment equal to one. This is referred to as binary point-only scaling
or power-of-two scaling:

o= 2exponent

real-world valu X integer

or

real-world value = 2~fractionlength

X integer

In System Toolbox software, you can define a fixed-point data type and scaling for the output or the
parameters of many blocks by specifying the word length and fraction length of the quantity. The
word length and fraction length define the whole of the data type and scaling information for binary-
point only signals.

All System Toolbox blocks that support fixed-point data types support signals with binary-point only
scaling. Many fixed-point blocks that do not perform arithmetic operations but merely rearrange
data, such as Delay and Matrix Transpose, also support signals with [Slope Bias] scaling.

12-5

12 Fixed-Point Design

12-6

Precision and Range

You must pay attention to the precision and range of the fixed-point data types and scalings you
choose for the blocks in your simulations, in order to know whether rounding methods will be invoked
or if overflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling can represent. The range of
representable numbers for a two's complement fixed-point number of word length wl, scaling S, and
bias B is illustrated below:

§-(-2*1)+B B s-(2°71-1)+ B

| i |
negative numbers positive numbers

For both signed and unsigned fixed-point numbers of any data type, the number of different bit
patterns is 2.,

For example, in two's complement, negative numbers must be represented as well as zero, so the
maximum value is 2", Because there is only one representation for zero, there are an unequal

number of positive and negative numbers. This means there is a representation for -2*"! but not for
2w1—1:

For slope = 1 and bias = 0:

_21{.‘1—1 []- zwi—l _ 1

| | |
| , I . I
negative numbers positive numbers

The full range is the broadest range for a data type. For floating-point types, the full range is -« to «.
For integer types, the full range is the range from the smallest to largest integer value (finite) the
type can represent. For example, from -128 to 127 for a signed 8-bit integer.

Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows can occur if the
result of an operation is larger or smaller than the numbers in that range.

System Toolbox software does not allow you to add guard bits to a data type on-the-fly in order to
avoid overflows. Guard bits are extra bits in either a hardware register or software simulation that
are added to the high end of a binary word to ensure that no information is lost in case of overflow.
Any guard bits must be allocated upon model initialization. However, the software does allow you to
either saturate or wrap overflows. Saturation represents positive overflows as the largest positive
number in the range being used, and negative overflows as the largest negative number in the range
being used. Wrapping uses modulo arithmetic to cast an overflow back into the representable range
of the data type. See “Modulo Arithmetic” on page 12-8 for more information.

Fixed-Point Concepts and Terminology

Precision

The precision of a fixed-point number is the difference between successive values representable by its
data type and scaling, which is equal to the value of its least significant bit. The value of the least
significant bit, and therefore the precision of the number, is determined by the number of fractional
bits. A fixed-point value can be represented to within half of the precision of its data type and scaling.
The term resolution is sometimes used as a synonym for this definition.

For example, a fixed-point representation with four bits to the right of the binary point has a precision
of 2 or 0.0625, which is the value of its least significant bit. Any number within the range of this
data type and scaling can be represented to within (24)/2 or 0.03125, which is half the precision. This
is an example of representing a number with finite precision.

Rounding Modes

When you represent numbers with finite precision, not every number in the available range can be
represented exactly. If a number cannot be represented exactly by the specified data type and
scaling, it is rounded to a representable number. Although precision is always lost in the rounding
operation, the cost of the operation and the amount of bias that is introduced depends on the
rounding mode itself. To provide you with greater flexibility in the trade-off between cost and bias,
DSP System Toolbox software currently supports the following rounding modes:

* Ceiling rounds the result of a calculation to the closest representable number in the direction of
positive infinity.

* Convergent rounds the result of a calculation to the closest representable number. In the case of
a tie, Convergent rounds to the nearest even number. This is the least biased rounding mode
provided by the toolbox.

* Floor, which is equivalent to truncation, rounds the result of a calculation to the closest
representable number in the direction of negative infinity. The truncation operation results in
dropping of one or more least significant bits from a number.

* Nearest rounds the result of a calculation to the closest representable number. In the case of a
tie, Nearest rounds to the closest representable number in the direction of positive infinity.

* Round rounds the result of a calculation to the closest representable number. In the case of a tie,
Round rounds positive numbers to the closest representable number in the direction of positive
infinity, and rounds negative numbers to the closest representable number in the direction of
negative infinity.

* Simplest rounds the result of a calculation using the rounding mode (Floor or Zero) that adds
the least amount of extra rounding code to your generated code. For more information, see
“Rounding Mode: Simplest” (Fixed-Point Designer).

* Zero rounds the result of a calculation to the closest representable number in the direction of
Zero.

To learn more about each of these rounding modes, see “Rounding” (Fixed-Point Designer).

For a direct comparison of the rounding modes, see “Choosing a Rounding Method” (Fixed-Point
Designer).

12-7

12 Fixed-Point Design

Arithmetic Operations

12-8

In this section...

“Modulo Arithmetic” on page 12-8
“Two's Complement” on page 12-8
“Addition and Subtraction” on page 12-9
“Multiplication” on page 12-10

“Casts” on page 12-12

Note These sections will help you understand what data type and scaling choices result in overflows
or a loss of precision.

Modulo Arithmetic

Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of numbers,
wrapping the results of any calculations that fall outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this system can
only be 1 through 12. Therefore, in the “clock” system, 9 plus 9 equals 6. This can be more easily
visualized as a number circle:

9.. ... plus 9 more ...

... equals 6.

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results that fall outside
this range are wrapped “around the circle” to either 0 or 1.

Two's Complement

Two's complement is a common representation of signed fixed-point numbers. In two's complement,
positive numbers always start with a 0 and negative numbers always start with a 1. If the leading bit

Arithmetic Operations

of a two's complement number is 0, the value is obtained by calculating the standard binary value of
the number. If the leading bit of a two's complement number is 1, the value is obtained by assuming
that the leftmost bit is negative, and then calculating the binary value of the number. For example,
01=0+2%=1
1m=-2H+Q%=(-2+1= -1

To compute the negative of a binary number using two's complement,

1 Take the one's complement. That is, all 0's are flipped to 1's and all 1's are flipped to 0's.
2 Add a1 using binary math.
3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one's complement of the
number, or flip the bits:

11010 - 00101

Next, add a 1, wrapping all numbers to 0 or 1:

00101
+1
00110

Addition and Subtraction

The addition of fixed-point numbers requires that the binary points of the addends be aligned. The
addition is then performed using binary arithmetic so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010.1 (18.5)
+0110.110 (6.75)
011001.010 (25.25)

Fixed-point subtraction is equivalent to adding while using the two's complement value for any
negative values. In subtraction, the addends must be sign extended to match each other's length. For
example, consider subtracting 0110.110 (6.75) from 010010.1 (18.5):

010010100 (18,5 , . 010010.100 (18.5)
- 0110110 (8.75) MwascompEment | 111001010 (-8.75)
and sign exkension

/IDDIDIIL 110 (11.753

Carry bitis
discarded.

Most fixed-point DSP System Toolbox blocks that perform addition cast the adder inputs to an
accumulator data type before performing the addition. Therefore, no further shifting is necessary
during the addition to line up the binary points. See “Casts” on page 12-12 for more information.

12-9

12 Fixed-Point Design

12-10

Multiplication

The multiplication of two's complement fixed-point numbers is directly analogous to regular decimal
multiplication, with the exception that the intermediate results must be sign extended so that their
left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

10,11 (-1.25)
The extra 1 011 (3)
is the resultnf 11011
necessary sign
extensian. %
1100.01 (-3.75)

\

The number of fractianal bits of the
result & the sum of the number of
fractional bits of the factars.

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication in the System Toolbox
software. The diagrams illustrate the differences between the data types used for real-real, complex-
real, and complex-complex multiplication. See individual reference pages to determine whether a
particular block accepts complex fixed-point inputs.

In most cases, you can set the data types used during multiplication in the block mask. For details,
see “Casts” on page 12-12.

Note The following diagrams show the use of fixed-point data types in multiplication in System
Toolbox software. They do not represent actual subsystems used by the software to perform
multiplication.

Real-Real Multiplication

The following diagram shows the data types used in the multiplication of two real numbers in System
Toolbox software. The software returns the output of this operation in the product output data type,
as the next figure shows.

Input a

data type Product output
F » data type
MULTIPLIER o ’
Input ¢ I
data type

Real-Complex Multiplication

The following diagram shows the data types used in the multiplication of a real and a complex fixed-
point number in System Toolbox software. Real-complex and complex-real multiplication are
equivalent. The software returns the output of this operation in the product output data type, as the
next figure shows.

Arithmetic Operations

Input
a+bi

Input a
data type

Input c+di

data type
—_—

a
* MULTIPLIER }i" Product
—* output

data type

e{lm —

d

Complex-Complex Multiplication

MULTIPLIER 7

ac+adi
—_—

The following diagram shows the multiplication of two complex fixed-point numbers in System
Toolbox software. Note that the software returns the output of this operation in the accumulator
output data type, as the next figure shows.

data type

Input
c+di

¥

_/—RE 8

_\hlmg‘

L

-

MULTIPLIER

c

Product
output
data type

CAST

data type

.| MULTIPLIER

T

SUBTRACTOR

CAST

L=

* MULTIPLIER

CAST

™ m

MULTIPLIER

CAST

c

P

Product
output
data type

jin

Accumulator
data type

ADDER

fac-bd)
+

fad+be)i
ac-bd

Re —~_

—_

Im —""

ad+be

System Toolbox blocks cast to the accumulator data type before performing addition or subtraction
operations. In the preceding diagram, this is equivalent to the C code

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator.

12-11

12 Fixed-Point Design

12-12

Casts

Many fixed-point System Toolbox blocks that perform arithmetic operations allow you to specify the
accumulator, intermediate product, and product output data types, as applicable, as well as the
output data type of the block. This section gives an overview of the casts to these data types, so that
you can tell if the data types you select will invoke sign extension, padding with zeros, rounding,
and/or overflow. Sign extension is the addition of bits that have the value of the most significant bit to
the high end of a two's complement number. Sign extension does not change the value of the binary
number. Padding is extending the least significant bit of a binary word with one or more zeros.

Casts to the Accumulator Data Type

For most fixed-point System Toolbox blocks that perform addition or subtraction, the operands are
first cast to an accumulator data type. Most of the time, you can specify the accumulator data type on
the block mask. For details, see the description for Accumulator data type parameter in “Specify
Fixed-Point Attributes for Blocks” (DSP System Toolbox). Since the addends are both cast to the same
accumulator data type before they are added together, no extra shift is necessary to insure that their
binary points align. The result of the addition remains in the accumulator data type, with the
possibility of overflow.

Casts to the Intermediate Product or Product Output Data Type

For System Toolbox blocks that perform multiplication, the output of the multiplier is placed into a
product output data type. Blocks that then feed the product output back into the multiplier might first
cast it to an intermediate product data type. Most of the time, you can specify these data types on the
block mask. For details, see the description for Intermediate Product and Product Output data
type parameters in “Specify Fixed-Point Attributes for Blocks” (DSP System Toolbox).

Casts to the Output Data Type

Many fixed-point System Toolbox blocks allow you to specify the data type and scaling of the block
output on the mask. Remember that the software does not allow mixed types on the input and output
ports of its blocks. Therefore, if you would like to specify a fixed-point output data type and scaling
for a System Toolbox block that supports fixed-point data types, you must feed the input port of that
block with a fixed-point signal. The final cast made by a fixed-point System Toolbox block is to the
output data type of the block.

Note that although you cannot mix fixed-point and floating-point signals on the input and output ports
of blocks, you can have fixed-point signals with different word and fraction lengths on the ports of
blocks that support fixed-point signals.

Casting Examples

It is important to keep in mind the ramifications of each cast when selecting these intermediate data
types, as well as any other intermediate fixed-point data types that are allowed by a particular block.
Depending upon the data types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.

Cast from a Shorter Data Type to a Longer Data Type

Consider the cast of a nonzero number, represented by a four-bit data type with two fractional bits, to
an eight-bit data type with seven fractional bits:

Arithmetic Operations

.

source The source bits must be shifted up to match the
binary point position of the destination data type.

destination

! _
e NI

E;: P;;lml;'ﬁ:ﬁgﬁiﬂgtﬁim These bits of the destination
es

; : data are padded with
hift up. Overflow might occur. O'sor 1's.

The result will saturate or wrap.

As the diagram shows, the source bits are shifted up so that the binary point matches the destination
binary point position. The highest source bit does not fit, so overflow might occur and the result can
saturate or wrap. The empty bits at the low end of the destination data type are padded with either
O'sorl's:

» If overflow does not occur, the empty bits are padded with 0's.

+ If wrapping occurs, the empty bits are padded with 0's.

» If saturation occurs,

* The empty bits of a positive number are padded with 1's.
* The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow might still
occur. This can happen when the integer length of the source data type (in this case two) is longer
than the integer length of the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if the destination data
type and scaling has fewer fractional bits than the source.

Cast from a Longer Data Type to a Shorter Data Type

Consider the cast of a nonzero number, represented by an eight-bit data type with seven fractional
bits, to a four-bit data type with two fractional bits:

12-13

12 Fixed-Point Design

12-14

.

source The source bits must be shifted down to match the
binary point position of the destination data type.

destination
| i i i R
. L R I IR I I
These bits from the source
) do not fit into the destination

There is no value for this bit data type. The result is rounded.
from the source, so the result
must be sign-extended to fill
the destination data type.

As the diagram shows, the source bits are shifted down so that the binary point matches the
destination binary point position. There is no value for the highest bit from the source, so the result is
sign extended to fill the integer portion of the destination data type. The bottom five bits of the
source do not fit into the fraction length of the destination. Therefore, precision can be lost as the
result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all the integer bits
are maintained. Conversely, full precision can be maintained even if you cast to a shorter data type,
as long as the fraction length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost from the high end of the
result and overflow might occur.

The worst case occurs when both the integer length and the fraction length of the destination data
type are shorter than those of the source data type and scaling. In that case, both overflow and a loss
of precision can occur.

Fixed-Point Support for MATLAB System Objects

Fixed-Point Support for MATLAB System Objects

In this section...

“Getting Information About Fixed-Point System Objects” on page 12-15
“Setting System Object Fixed-Point Properties” on page 12-15

For information on working with Fixed-Point features, refer to the “Fixed-Point”topic.

Getting Information About Fixed-Point System Objects

System objects that support fixed-point data processing have fixed-point properties. When you display
the properties of a System object, click Show all properties at the end of the property list to
display the fixed-point properties for that object. You can also display the fixed-point properties for a
particular object by typing vision.<0ObjectName>.helpFixedPoint at the command line.

The following Computer Vision Toolbox objects support fixed-point data processing.

Fixed-Point Data Processing Support
vision.AlphaBlender
vision.BlobAnalysis
vision.BlockMatcher

vision.DCT

vision.Maximum

vision.Mean

vision.Median

vision.Minimum

Setting System Object Fixed-Point Properties

Several properties affect the fixed-point data processing used by a System object. Objects perform
fixed-point processing and use the current fixed-point property settings when they receive fixed-point
input.

You change the values of fixed-point properties in the same way as you change any System object
property value. You also use the Fixed-Point Designer numerictype object to specify the desired
data type as fixed point, the signedness, and the word- and fraction-lengths.

In the same way as for blocks, the data type properties of many System objects can set the
appropriate word lengths and scalings automatically by using full precision. System objects assume
that the target specified on the Configuration Parameters Hardware Implementation target is ASIC/
FPGA.

If you have not set the property that activates a dependent property and you attempt to change that
dependent property, you will get a warning message.

You must set the property that activates a dependent property before attempting to change the
dependent property. If you do not set the activating property, you will get a warning message.

Note System objects do not support fixed-point word lengths greater than 128 bits.

12-15

12 Fixed-Point Design

For any System object provided in the Toolbox, the fimath settings for any fimath attached to a fi
input or a fi property are ignored. Outputs from a System object never have an attached fimath.

12-16

Specify Fixed-Point Attributes for Blocks

Specify Fixed-Point Attributes for Blocks

In this section...

“Fixed-Point Block Parameters” on page 12-17

“Specify System-Level Settings” on page 12-19

“Inherit via Internal Rule” on page 12-19

“Specify Data Types for Fixed-Point Blocks” on page 12-26

Fixed-Point Block Parameters

Toolbox blocks that have fixed-point support usually allow you to specify fixed-point characteristics
through block parameters. By specifying data type and scaling information for these fixed-point
parameters, you can simulate your target hardware more closely.

Note Floating-point inheritance takes precedence over the settings discussed in this section. When
the block has floating-point input, all block data types match the input.

You can find most fixed-point parameters on the Data Types pane of toolbox blocks. The following
figure shows a typical Data Types pane.

Main Data Types
Fixed-point operational parameters

Rounding mode: | Floor ~ | [saturate on integer overflow

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating
point, all block data types match the input. When the block input is fixed point, all internal data types are signed fixed point.

Data Type Minimum Maximum
Sine table: | Inherit: Same word length as | v| > N/A N/A
Product output: | Inherit: Inherit via internal rul v| >> MN/A N/A
Accumulator: | Inherit: Inherit via internal rul v| > N/A N/A
Output: | Inherit: Inherit via internal rul v| > |[] | : |[]

[] Lock data type settings against changes by the fixed-point tools

All toolbox blocks with fixed-point capabilities share a set of common parameters, but each block can
have a different subset of these fixed-point parameters. The following table provides an overview of
the most common fixed-point block parameters.

12-17

12 Fixed-Point Design

12-18

Fixed-Point Data Type Description
Parameter

Rounding Mode Specifies the rounding mode for the block to use when the specified
data type and scaling cannot exactly represent the result of a fixed-point
calculation.

See “Rounding Modes” on page 12-7 for more information on the
available options.

Saturate on integer When you select this parameter, the block saturates the result of its
overflow fixed-point operation. When you clear this parameter, the block wraps
the result of its fixed-point operation.

For details on saturate and wrap, see “Overflow Handling” on page 12-6
for fixed-point operations.

Intermediate Product Specifies the data type and scaling of the intermediate product for fixed-
point blocks. Blocks that feed multiplication results back to the input of
the multiplier use the intermediate product data type.

See the reference page of a specific block to learn about the
intermediate product data type for that block.

Product Output Specifies the data type and scaling of the product output for fixed-point
blocks that must compute multiplication results.

See the reference page of a specific block to learn about the product
output data type for that block. For or complex-complex multiplication,
the multiplication result is in the accumulator data type. See
“Multiplication Data Types” on page 12-10 for more information on
complex fixed-point multiplication in toolbox software.

Accumulator Specifies the data type and scaling of the accumulator (sum) for fixed-
point blocks that must hold summation results for further calculation.
Most such blocks cast to the accumulator data type before performing
the add operations (summation).

See the reference page of a specific block for details on the accumulator
data type of that block.

Output Specifies the output data type and scaling for blocks.

Using the Data Type Assistant

The Data Type Assistant is an interactive graphical tool available on the Data Types pane of some
fixed-point toolbox blocks.

To learn more about using the Data Type Assistant to help you specify block data type parameters,
see “Specify Data Types Using Data Type Assistant” (Simulink).

Checking Signal Ranges
Some fixed-point toolbox blocks have Minimum and Maximum parameters on the Data Types pane.

When a fixed-point data type has these parameters, you can use them to specify appropriate minimum
and maximum values for range checking purposes.

Specify Fixed-Point Attributes for Blocks

To learn how to specify signal ranges and enable signal range checking, see “Specify Signal Ranges”
(Simulink).

Specify System-Level Settings

You can monitor and control fixed-point settings for toolbox blocks at a system or subsystem level
with the Fixed-Point Tool. For more information, see Fixed-Point Tool.

Logging

The Fixed-Point Tool logs overflows, saturations, and simulation minimums and maximums for fixed-
point toolbox blocks. The Fixed-Point Tool does not log overflows and saturations when the Data
overflow line in the Diagnostics > Data Integrity pane of the Configuration Parameters dialog
box is set to None.

Autoscaling

You can use the Fixed-Point Tool autoscaling feature to set the scaling for toolbox fixed-point data
types.

Data type override

toolbox blocks obey the Use local settings, Double, Single, and Off modes of the Data type
override parameter in the Fixed-Point Tool. The Scaled double mode is also supported for
toolboxes source and byte-shuffling blocks, and for some arithmetic blocks such as Difference and
Normalization.

Scaled double is a double data type that retains fixed-point scaling information. Using the data type
override, you can convert your fixed-point data types to scaled doubles. You can then simulate to
determine the ideal floating-point behavior of your system. After you gather that information, you can
turn data type override off to return to fixed-point data types, and your quantities still have their
original scaling information because it was held in the scaled double data types.

Inherit via Internal Rule

Selecting appropriate word lengths and scalings for the fixed-point parameters in your model can be
challenging. To aid you, an Inherit via internal rule choice is often available for fixed-point
block data type parameters, such as the Accumulator and Product output signals. The following
sections describe how the word and fraction lengths are selected for you when you choose Inherit
via internal rule for a fixed-point block data type parameter in toolbox software:

* “Internal Rule for Accumulator Data Types” on page 12-20

* “Internal Rule for Product Data Types” on page 12-20

* “Internal Rule for Output Data Types” on page 12-20

* “The Effect of the Hardware Implementation Pane on the Internal Rule” on page 12-20

* “Internal Rule Examples” on page 12-21

Note In the equations in the following sections, WL = word length and FL = fraction length.

12-19

12 Fixed-Point Design

12-20

Internal Rule for Accumulator Data Types

The internal rule for accumulator data types first calculates the ideal, full-precision result. Where N is
the number of addends:

WLidealaccumulator = WLinputtoaccumulator + floor(logy(N — 1)) + 1
FLidealaccumulator = FLinputtoaccumulator

For example, consider summing all the elements of a vector of length 6 and data type sfix10 En8. The
ideal, full-precision result has a word length of 13 and a fraction length of 8.

The accumulator can be real or complex. The preceding equations are used for both the real and
imaginary parts of the accumulator. For any calculation, after the full-precision result is calculated,
the final word and fraction lengths set by the internal rule are affected by your particular hardware.
See “The Effect of the Hardware Implementation Pane on the Internal Rule” on page 12-20 for more
information.

Internal Rule for Product Data Types

The internal rule for product data types first calculates the ideal, full-precision result:
WLidealproduct = WLinputl + WLinputZ
FLidealproduct = FLinputl + FLinputZ

For example, multiplying together the elements of a real vector of length 2 and data type sfix10 En8.
The ideal, full-precision result has a word length of 20 and a fraction length of 16.

For real-complex multiplication, the ideal word length and fraction length is used for both the
complex and real portion of the result. For complex-complex multiplication, the ideal word length and
fraction length is used for the partial products, and the internal rule for accumulator data types
described above is used for the final sums. For any calculation, after the full-precision result is
calculated, the final word and fraction lengths set by the internal rule are affected by your particular
hardware. See “The Effect of the Hardware Implementation Pane on the Internal Rule” on page 12-
20 for more information.

Internal Rule for Output Data Types

A few toolbox blocks have an Inherit via internal rule choice available for the block output.
The internal rule used in these cases is block-specific, and the equations are listed in the block
reference page.

As with accumulator and product data types, the final output word and fraction lengths set by the
internal rule are affected by your particular hardware, as described in “The Effect of the Hardware
Implementation Pane on the Internal Rule” on page 12-20.

The Effect of the Hardware Implementation Pane on the Internal Rule

The internal rule selects word lengths and fraction lengths that are appropriate for your hardware. To
get the best results using the internal rule, you must specify the type of hardware you are using on
the Hardware Implementation pane of the Configuration Parameters dialog box. You can open this
dialog box from the Simulation menu in your model.

Specify Fixed-Point Attributes for Blocks

1.5‘31 Configuration Parameters: vdp/Configuration (Active) @
Select: Embedded hardware (simulation and code generation) i
g""Sulver Device vendor: [Generic 'I Device type: [Unspeciﬂed (@assume 32-bit Generic) 'J
-~ Data Import/Export
+~Optimization Humber of bits Largest atomic size
?--Diagnostics _ char: |8 short: 16 int: 32 i
r~Hardware Implementation integer: Ichar 'I =
-~ Model Referencing long: 32 float: 32 double: |64
+- Simulation Target floating-point: IND”Q 'I

native: |32 pointer: | 32

Byte ordering: | Unspecified Signed integer division rounds to: | Undefined hd

Shift right on a signed integer as arithmetic shift

+-Code Generation

Emulation hardware (code generation only)

Configure current execution hardware device

J oK H Cancel H Help Apply

ASIC/FPGA

On an ASIC/FPGA target, the ideal, full-precision word length and fraction length calculated by the
internal rule are used. If the calculated ideal word length is larger than the largest allowed word
length, you receive an error.

Other targets

For all targets other than ASIC/FPGA, the ideal, full-precision word length calculated by the internal
rule is rounded up to the next available word length of the target. The calculated ideal fraction length
is used, keeping the least-significant bits.

If the calculated ideal word length for a product data type is larger than the largest word length on
the target, you receive an error. If the calculated ideal word length for an accumulator or output data
type is larger than the largest word length on the target, the largest target word length is used.

The largest word length allowed for Simulink and toolbox software on any target is 128 bits.
Internal Rule Examples

The following sections show examples of how the internal rule interacts with the Hardware
Implementation pane to calculate accumulator data types on page 12-21 and product data types
on page 12-24.

Accumulator Data Types

Consider the following model ex_internalRule accumExp.

12-21

matlab:ex_internalRule_accumExp

12 Fixed-Point Design

e > oif

Out1

Constant Difference

2.5 i
e > o

Out2

Constant1 Difference

2.5 .
e > o

Out3

Constant2 Difference2

In the Difference blocks, the Accumulator parameter is set to Inherit: Inherit via internal
rule, and the Output parameter is set to Inherit: Same as accumulator. Therefore, you can
see the accumulator data type calculated by the internal rule on the output signal in the model.

In the preceding model, the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box is set to ASIC/FPGA. Therefore, the accumulator data type used
by the internal rule is the ideal, full-precision result.

Calculate the full-precision word length for each of the Difference blocks in the model:

WLigealaccumulator = WLinputtoaccumulator + floor(logz(numberofaccumulations)) + 1
WLigealaccumulator = 9 + floor(logp(1)) + 1
WLidealaccumulator =9 +0+1 =10

WLigealaccumulatorl = WLinputtoaccumulatorl + floor(logy(numberofaccumulations)) + 1
WLigealaccumulatort = 16 + floor(logp(1)) + 1
WLidealaccumulator1 = 16 + 0+ 1 =17

WLigealaccumulator2 = WLinputtoaccumulator2 + floor(logy(numberofaccumulations)) + 1
Wlidealaccumulator2 = 127 + floor(logy(1)) + 1
Wligealaccumulator2 = 127 + 0+ 1 =128

Calculate the full-precision fraction length, which is the same for each Matrix Sum block in this
example:

FLigealaccumulator = FLinputtoaccumulator

FLidealaccumulator = 4

12-22

Specify Fixed-Point Attributes for Blocks

Now change the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box to 32—bit Embedded Processor, by changing the parameters
as shown in the following figure.

-

% Configuration Parameters: ex_internalRule_accumBxp/Cenfiguration (Active) [==7]
Select: Embedded hardware (simulation and code generation) -
;- Solver Device vendor: [Generic v] Device type: [32—bit Embedded Pr ']
i~ Data Impaort/Export
+-Optimization Number of bits Largest atomic size
#-Diagnostics char: 8 short: 16 int: 32 :

-Hardware Implementation integer: [Char v]
~Model Referencing long: 32 float: 32 double: |64

7-Gi i floating-point: |Mone -
#-Simulation Target native: 32 pointer: 32 =7 ’]

-Code Generation

:

T

m

-HDL Code Generation
Byte ordering: [Unspeciﬂed - | Signed integer division rounds to: | Undefined -

Shift right on a signed integer as arithmetic shift

Emulation hardware (code generation only)

[7] None
Device vendor: [Generic "] Device type: [32—bit Embedded Processor "]
Number of bits Largest atomic size
har: |8 hort: |16 int: 32 M
char sho n integer: [Char "]
long: 32 float: 32 double: |64
. . floating-point: [None ']
native: | 32 pointer: |32

Byte ordering: |Unspecified - | Signed integer division rounds to: | Undefined -

Shift right on a signed integer as arithmetic shift

s}' [OK][Cancel H Help] Apply

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word lengths available. Therefore,
the ideal word lengths of 10, 17, and 128 bits calculated by the internal rule cannot be used. Instead,
the internal rule uses the next largest available word length in each case You can see this if you rerun
the model, as shown in the following figure.

12-23

12 Fixed-Point Design

12-24

2.5 =fixd End) sfiiE_En4 D
[1_:5 :I = > Dift g
Ot
Constant Difference
2.5 7 | =fiB End : sf32 End 3
[2] = o &
Out2
Constanti Difference
2.5 sfl1Z7T_End sfx3Z_End
- | . _
[i] P om SRR
Cut3

Constant2 Difference2

Product Data Types

Consider the following model ex_internalRule prodExp.

[2.5, 1.25] —‘
A Array-\Vector
Muttiply >

>V out1
3

Array-\Vector

Multiply

[2.5, 1.25] —I
A Array-Vector
Multply

gl out2
3

Array-Vector
Multiply1

In the Array-Vector Multiply blocks, the Product Output parameter is set to Inherit: Inherit
via internal rule, and the Qutput parameter is set to Inherit: Same as product output.
Therefore, you can see the product output data type calculated by the internal rule on the output
signal in the model. The setting of the Accumulator parameter does not matter because this
example uses real values.

For the preceding model, the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box is set to ASIC/FPGA. Therefore, the product data type used by
the internal rule is the ideal, full-precision result.

Calculate the full-precision word length for each of the Array-Vector Multiply blocks in the model:

matlab:ex_internalRule_prodExp

Specify Fixed-Point Attributes for Blocks

WLidealproduct = WLinputa + WLinputb
WLidealproduct =7+5=12

WLigeaiproduct1 = WLinputa + WLinputb
Wligealproduct1 = 16 + 15 = 31

Calculate the full-precision fraction length, which is the same for each Array-Vector Multiply block in

this example:

FLidealaccumulator = FLinputtoaccumulator

FLidealaccumulator = 4

Now change the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box to 32—bit Embedded Processor, as shown in the following

figure.

% Configuration Parameters: ex_internalRule_prodExp/Cenfiguration (Active)

=55

T

-Code Generation
~HOL Code Generation

.-

Salect: Embedded hardware (simulation and code generation) i
i-Solver Device vendor: ’Generic '] Device type: ’32—bit Embedded Pri ']
i-Data Import/Export
+-Optimization Number of bits Largest atomic size

#-Diagnostics char: |8 short: |16 int: i

-Hardware Implementat... integer: ’Char ']
~Model Referencing long: 32 float: 32 double:
i 5 i floating-point: |None -
+ Simulation Target native: |32 pointer: |32 =< ’]

Byte ordering: [Unspeciﬂed

v | Signed integer division rounds to: |Undefined

Emulation hardware (code generation only)

[T none

Shift right on a signed integer as arithmetic shift

m

Device vendor: ’Generic

'] Device type: [MATLAB Host Computer ']

Humber of bits

char: |8 short: 16 int:
long: |32 float: 32 double:
native: |32 pointer: |32

Byte ordering: |Little Endian

32

64

Shift right on a signed integer as arithmetic shift

Largest atomic size

integer: [Char ']

floating-point: [None ']

Signed integer division rounds to: |Undefined -

3

[OK H Cancel ” Help] Apply

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word lengths available. Therefore,
the ideal word lengths of 12 and 31 bits calculated by the internal rule cannot be used. Instead, the
internal rule uses the next largest available word length in each case. You can see this if you rerun

the model, as shown in the following figure.

12-25

12 Fixed-Point Design

| sfT_End

T
o
[
o

"
™ Aray-Vector

sficid_End
v Multiply ."C :'
Array-\Vector

hultiply

.
" Amay-Vector

sficdZ_End —
v Multiply .-
3 sficls_En2 Cutz
: Array-WVector

Multiply1

I,

Specify Data Types for Fixed-Point Blocks

The following sections show you how to use the Fixed-Point Tool to select appropriate data types for
fixed-point blocks in the ex fixedpoint tut model:

* “Prepare the Model” on page 12-26

* “Use Data Type Override to Find a Floating-Point Benchmark” on page 12-31
* “Use the Fixed-Point Tool to Propose Fraction Lengths” on page 12-31

* “Examine the Results and Accept the Proposed Scaling” on page 12-31

Prepare the Model

1 Open the model by typing ex fixedpoint tut at the MATLAB command line.

Signed > RLérIiJr;ri.lng » v sfix
Signed Cumulative Sum To Workspace

Unsigned g RLéT;ri]ng » vy ufix
Unsigned Cumulative Sum To Workspace

Fixed-Point Sources
Copyright 2009-2010 The MathWorks, Inc.

This model uses the Cumulative Sum block to sum the input coming from the Fixed-Point Sources
subsystem. The Fixed-Point Sources subsystem outputs two signals with different data types:

12-26

matlab:ex_fixedpoint_tut

Specify Fixed-Point Attributes for Blocks

» The Signed source has a word length of 16 bits and a fraction length of 15 bits.

* The Unsigned source has a word length of 16 bits and a fraction length of 16 bits.
2 Run the model to check for overflow. MATLAB displays the following warnings at the command
line:

Warning: Overflow occurred. This originated from
'ex fixedpoint tut/Signed Cumulative Sum'.
Warning: Overflow occurred. This originated from
'ex fixedpoint tut/Unsigned Cumulative Sum'.

According to these warnings, overflow occurs in both Cumulative Sum blocks.

3 Toinvestigate the overflows in this model, use the Fixed-Point Tool. You can open the Fixed-Point
Tool by selecting Tools > Fixed-Point > Fixed-Point Tool from the model menu. Turn on
logging for all blocks in your model by setting the Fixed-point instrumentation mode
parameter to Minimums, maximums and overflows.

4 Now that you have turned on logging, rerun the model by clicking the Simulation button.

12-27

12

Fixed-Point Design

[& Fixed-Point Tool
File Collect Autoscaling
B ® to OT 0B

Model Hierarchy

Results

Run View Tools Help

(=[5 /=)

Show:’l‘-\ll results

7

Contents of: ex_fixedpoint_tut

Fixed-point preparation for selected system

4 %3 Fixed-Point Tool Root
4 ex_fixedpoint_tut
> &] Fixed-Point Sources

Column View: |Simulation View + | Show Details

Na’me Run CompiledDT SpecifiedDT SimMin

Fixed-Point Advisor

Shortcuts to set up runs

Model-wide double override and full instrumentation

Madel-wide no override and full instrumentation
Add/Edit shortouts
Settings for selected system

Fixed-paint instrumentation mode:

[Use local settings -

Data type override:

Use local settings

Data collection
Store resultsinrun: Run 1

Simulate

[] Merge instrumentation results from multiple simulations
Derive min/max values for selected system
Highlight results with potential issues
Automatic data typing for selected system

Propose fraction lengths Configure...

Apply accepted fraction lengths

Show details for selected result

Apply

_ 9

5 The results of the simulation appear in a table in the central Contents pane of the Fixed-Point
Tool. Review the following columns:

* Name — Provides the name of each signal in the following format: Subsystem Name/Block
Name: Signal Name.

* SimDT — The simulation data type of each logged signal.

* SpecifiedDT — The data type specified on the block dialog for each signal.

* SimMin — The smallest representable value achieved during simulation for each logged
signal.

* SimMax — The largest representable value achieved during simulation for each logged
signal.

* OverflowWraps — The number of overflows that wrap during simulation.

12-28

Specify Fixed-Point Attributes for Blocks

For more information on each of the columns in this table, see the section of the Simulink
fxptdlg function reference page.

You can also see that the SimMin and SimMax values for the Accumulator data types range
from 0 to .9997. The logged results indicate that 8,192 overflows wrapped during simulation in
the Accumulator data type of the Signed Cumulative Sum block. Similarly, the Accumulator data
type of the Unsigned Cumulative Sum block had 16,383 overflows wrap during simulation.

To get more information about each of these data types, highlight them in the Contents pane,

and click the Show details for selected result button (ﬂl)
Assume a target hardware that supports 32-bit integers, and set the Accumulator word length in
both Cumulative Sum blocks to 32. To do so, perform the following steps:

1 Right-click the Signed Cumulative Sum: Accumulator row in the Fixed-Point Tool pane,
and select Highlight Block In Model.
Double-click the block in the model, and select the Data Types pane of the dialog box.
Open the Data Type Assistant for Accumulator by clicking the Assistant button

(LI) in the Accumulator data type row.

4 Setthe Mode to Fixed Point. To see the representable range of the current specified data
type, click the Fixed-point details link. The tool displays the representable maximum and
representable minimum values for the current data type.

12-29

12 Fixed-Point Design

12-30

E Function Block Parameters: Signed Cumulative Sum @
Cumulative Sum

Cumulative sum of input matrix or input vector elements along the specified dimension: rows, columns, or channels.

Data Types

Fixed-point operational parameters

Rounding mode: IFIoor - | Overflow mode: |Wrap 'I

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating peint, all block data types
match the input.

Data Type Assistant Minimum Maximum

Accumulator: fixdt([1,16,0) - [—

Data Type Assistant for Accumulator

Mode: |Fixed point * | Signedness: Auto - | Word length: 16
Scaling: Binary point ¥ | Fraction length: 0
Data type override: |Inherit -

= Fixed-point details

Representable maximum: 32767 Assuming signed
Representable minimum: -32768 Assuming signed
Precision: 1 Refresh Details
Output: Inherit: Same as accumulator >> ‘ 1 0

[7] Lock data type settings against changes by the fixed-point tools

" [oK H Cancel H Help H Apply

5 Change the Word length to 32, and click the Refresh details button in the Fixed-point
details section to see the updated representable range. When you change the value of the
Word length parameter, the Data Type edit box automatically updates.

6 Click OK on the block dialog box to save your changes and close the window.

Set the word length of the Accumulator data type of the Unsigned Cumulative Sum block to
32 bits. You can do so in one of two ways:

* Type the data type fixdt([],32,0) directly into Data Type edit box for the
Accumulator data type parameter.

* Perform the same steps you used to set the word length of the Accumulator data type of
the Signed Cumulative Sum block to 32 bits.
7 To verify your changes in word length and check for overflow, rerun your model. To do so, click
the Simulate button in the Fixed-Point Tool.

The Contents pane of the Fixed-Point Tool updates, and you can see that no overflows occurred
in the most recent simulation. However, you can also see that the SimMin and SimMax values
range from 0 to 0. This underflow happens because the fraction length of the Accumulator data
type is too small. The SpecifiedDT cannot represent the precision of the data values. The
following sections discuss how to find a floating-point benchmark and use the Fixed-Point Tool to
propose fraction lengths.

Specify Fixed-Point Attributes for Blocks

Use Data Type Override to Find a Floating-Point Benchmark

The Data type override feature of the Fixed-Point tool allows you to override the data types
specified in your model with floating-point types. Running your model in Double override mode gives
you a reference range to help you select appropriate fraction lengths for your fixed-point data types.
To do so, perform the following steps:

1 Open the Fixed-Point Tool and set Data type override to Double.

2 Run your model by clicking the Run simulation and store active results button.

3 Examine the results in the Contents pane of the Fixed-Point Tool. Because you ran the model in
Doub'le override mode, you get an accurate, idealized representation of the simulation
minimums and maximums. These values appear in the SimMin and SimMax parameters.

4 Now that you have an accurate reference representation of the simulation minimum and
maximum values, you can more easily choose appropriate fraction lengths. Before making these
choices, save your active results to reference so you can use them as your floating-point
benchmark. To do so, select Results > Move Active Results To Reference from the Fixed-Point
Tool menu. The status displayed in the Run column changes from Active to Reference for all
signals in your model.

Use the Fixed-Point Tool to Propose Fraction Lengths

Now that you have your Double override results saved as a floating-point reference, you are ready to
propose fraction lengths.

1 To propose fraction lengths for your data types, you must have a set of Active results available
in the Fixed-Point Tool. To produce an active set of results, simply rerun your model. The tool
now displays both the Active results and the Reference results for each signal.

2 Select the Use simulation min/max if design min/max is not available check box. You did
not specify any design minimums or maximums for the data types in this model. Thus, the tool
uses the logged information to compute and propose fraction lengths. For information on
specifying design minimums and maximums, see “Specify Signal Ranges” (Simulink).

3 —-FL

Click the Propose fraction lengths button (-). The tool populates the proposed data types
in the ProposedDT column of the Contents pane. The corresponding proposed minimums and

maximums are displayed in the ProposedMin and ProposedMax columns.

Examine the Results and Accept the Proposed Scaling

Before accepting the fraction lengths proposed by the Fixed-Point Tool, it is important to look at the
details of that data type. Doing so allows you to see how much of your data the suggested data type
can represent. To examine the suggested data types and accept the proposed scaling, perform the
following steps:

1 In the Contents pane of the Fixed-Point Tool, you can see the proposed fraction lengths for the
data types in your model.

* The proposed fraction length for the Accumulator data type of both the Signed and Unsigned
Cumulative Sum blocks is 17 bits.

* To get more details about the proposed scaling for a particular data type, highlight the data
type in the Contents pane of the Fixed-Point Tool.

* Open the Autoscale Information window for the highlighted data type by clicking the Show

autoscale information for the selected result button (ﬂl).

12-31

12 Fixed-Point Design

12-32

When the Autoscale Information window opens, check the Value and Percent Proposed
Representable columns for the Simulation Minimum and Simulation Maximum parameters.
You can see that the proposed data type can represent 100% of the range of simulation data.

To accept the proposed data types, select the check box in the Accept column for each data type
whose proposed scaling you want to keep. Then, click the Apply accepted fraction lengths

button (2& |). The tool updates the specified data types on the block dialog boxes and the
Specifie column in the Contents pane.

To verify the newly accepted scaling, set the Data type override parameter back to Use local
settings, and run the model. Looking at Contents pane of the Fixed-Point Tool, you can see the
following details:

* The SimMin and SimMax values of the Active run match the SimMin and SimMax values
from the floating-point Reference run.

* There are no longer any overflows.

* The SimDT does not match the SpecifiedDT for the Accumulator data type of either
Cumulative Sum block. This difference occurs because the Cumulative Sum block always
inherits its Signedness from the input signal and only allows you to specify a Signedness of
Auto. Therefore, the SpecifiedDT for both Accumulator data types is fixdt([],32,17).
However, because the Signed Cumulative Sum block has a signed input signal, the SimDT for
the Accumulator parameter of that block is also signed (fixdt(1,32,17)). Similarly, the
SimDT for the Accumulator parameter of the Unsigned Cumulative Sum block inherits its
Signedness from its input signal and thus is unsigned (fixdt(0,32,17)).

Code Generation and Shared Library

* “Simulink Shared Library Dependencies” on page 13-2
* “Accelerating Simulink Models” on page 13-3
* “Portable C Code Generation for Functions That Use OpenCV Library” on page 13-4

13 Code Generation and Shared Library

Simulink Shared Library Dependencies

13-2

In general, the code you generate from Computer Vision Toolbox blocks is portable ANSI® C code.
After you generate the code, you can deploy it on another machine. For more information on how to
do so, see “Relocate Code to Another Development Environment” (Simulink Coder).

There are a few Computer Vision Toolbox blocks that generate code with limited portability. These
blocks use precompiled shared libraries, such as DLLs, to support I/O for specific types of devices and
file formats. To find out which blocks use precompiled shared libraries, open the Computer Vision
Toolbox Block Support Table. You can identify blocks that use precompiled shared libraries by
checking the footnotes listed in the Code Generation Support column of the table. All blocks that
use shared libraries have the following footnote:

Host computer only. Excludes Simulink Desktop Real-Time™ target.

Simulink Coder provides functions to help you set up and manage the build information for your
models. For example, one of the Build Information functions that Simulink Coder provides is
getNonBuildFiles. This function allows you to identify the shared libraries required by blocks in
your model. If your model contains any blocks that use precompiled shared libraries, you can install
those libraries on the target system. The folder that you install the shared libraries in must be on the
system path. The target system does not need to have MATLAB installed, but it does need to be
supported by MATLAB.

matlab:showvipblockdatatypetable

Accelerating Simulink Models

Accelerating Simulink Models

The Simulink software offer Accelerator and Rapid Accelerator simulation modes that remove
much of the computational overhead required by Simulink models. These modes compile target code
of your model. Through this method, the Simulink environment can achieve substantial performance
improvements for larger models. The performance gains are tied to the size and complexity of your
model. Therefore, large models that contain Computer Vision Toolbox blocks run faster in Rapid
Accelerator or Accelerator mode.

To change between Rapid Accelerator, Accelerator, and Normal mode, use the drop-down list
at the top of the model window.

f’ﬁ ex_vision_count_objects - Simulink EI@
File Edit View Display Diagram Analysis Code Tools Help
EEj: - FE & Update Diagram Ctrl+D » (@) - bid o
- = Model Configuration Parameters Ctrl+E —
g
| ex_vision_count_objects

Meode » M | i
@ |[Pa|ex_vision_count_objects : I} Y orma

Data Display * Accelerator 1
@ Stateflow Animation Rapid Accelerator
3 mg@ Enable Fast Restart Software-in-the-Loop (SIL)
— Step back (uninitialized) Processor-in-the-Loop (PIL)

@ Run Ctrl+T External
(> Step Forward
_ testpat1.png Image —
| B Stop Ctrl+5Shift+T
| Image From File Output 4
U
Stepping Options
200 pping Up

Debug ¥ | count » l:l

73] Constant
Dis play

B Label
b2
Ready 100% FixedStepDiscrete

For more information on the accelerator modes in Simulink, see “Choosing a Simulation Mode”

(Simulink).

13-3

13 Code Generation and Shared Library

Portable C Code Generation for Functions That Use OpenCV
Library

| OpenCV-based functions |

[-I:nd&‘- generation using C++ u:urnpiler:a_— 3
Running the generated code requires OpenCV libraries

“1 MATLAE host mon-host target i
QpenCV fibraries provided using Pack-N-Go OpenCl libraries must be provided Ffor specific target

The generated binary uses prebuilt OpenCV libraries that ship with the Computer Vision Toolbox
product. Your compiler must be compatible with the one used to build the libraries. The following
compilers are used to build the OpenCV libraries for MATLAB host:

Operating System Compatible Compiler

Windows 64 bit Microsoft Visual Studio 2015 Professional or Visual Studio 2017
Linux 64 bit gcc-4.9.3 (g++)

Mac 64 bit Xcode 6.2.0 (Clang++)

Limitations

Computer Vision Toolbox functions that use the OpenCV library do not support target code
generation from Simulink.

13-4

	Featured Examples
	Localize and Read Multiple Barcodes in Image
	Monocular Visual Odometry
	Track Vehicles Using Lidar: From Point Cloud to Track List
	Semantic Segmentation Using Dilated Convolutions
	Define Custom Pixel Classification Layer with Tversky Loss
	Track a Face in Scene
	Create 3-D Stereo Display
	Measure Distance from Stereo Camera to a Face
	Reconstruct 3-D Scene from Disparity Map
	Visualize Stereo Pair of Camera Extrinsic Parameters
	Remove Distortion from an Image Using the Camera Parameters Object

	Point Cloud Processing
	Getting Started with Point Clouds Using Deep Learning
	Import Point Cloud Data
	Augment Data
	Encode Point Cloud Data to Image-like Format
	Train a Deep Learning Classification Network with Encoded Point Cloud Data

	Point Cloud Registration Overview
	Point Cloud Registration Process
	Point Cloud Registration Methods
	Tips

	The PLY Format
	File Header
	Data
	Common Elements and Properties

	Using the Installer for Computer Vision System Toolbox Product
	Install Computer Vision Toolbox Add-on Support Files
	Install OCR Language Data Files
	Installation
	Pretrained Language Data and the ocr function

	Install and Use Computer Vision Toolbox OpenCV Interface
	Installation
	Support Package Contents
	Create MEX-File from OpenCV C++ file
	Use the OpenCV Interface C++ API
	Create Your Own OpenCV MEX-files
	Run OpenCV Examples

	Install and Use Computer Vision Toolbox OpenCV Interface for Simulink
	Installation
	Import OpenCV Code into Simulink
	Limitations

	Smile Detection by Using OpenCV Code in Simulink
	Required Products
	Set Up Your C++ Compiler
	Model Description
	Step 1: Import OpenCV Function to Create a Simulink Library
	Step 2: Use Generated Subsystem in Simulink Model
	Step 3: Simulate the Smile Detector
	Step 4: Generate C++ Code from the Smile Detector Model
	Deploy the Smile Detector on the Raspberry Pi Hardware

	Convert RGB Image to Grayscale Image by Using OpenCV Importer
	Required Products
	Set Up Your C++ Compiler
	Model Description
	Step 1: Import OpenCV Function to Create a Simulink Library
	Step 2: Use Generated Subsystem in Simulink Model
	Step 3: Simulate the RGB to Gray Convertor

	Draw Different Shapes by Using OpenCV Code in Simulink
	Required Products
	Set Up Your C++ Compiler
	Model Description
	Step 1: Import OpenCV Function to Create a Simulink Library
	Step 2: Use Generated Subsystem in Simulink Model
	Draw Atom on Image by Using C Caller Block

	Input, Output, and Conversions
	Export to Video Files
	Setting Block Parameters for this Example
	Configuration Parameters

	Import from Video Files
	Setting Block Parameters for this Example
	Configuration Parameters

	Batch Process Image Files
	Configuration Parameters

	Convert R'G'B' to Intensity Images
	Process Multidimensional Color Video Signals
	Video Formats
	Defining Intensity and Color
	Video Data Stored in Column-Major Format

	Image Formats
	Binary Images
	Intensity Images
	RGB Images

	Display and Graphics
	Display, Stream, and Preview Videos
	View Streaming Video in MATLAB
	Preview Video in MATLAB
	View Video in Simulink

	Draw Shapes and Lines
	Rectangle
	Line and Polyline
	Polygon
	Circle

	Registration and Stereo Vision
	Fisheye Calibration Basics
	Fisheye Camera Model
	Fisheye Camera Calibration in MATLAB

	Single Camera Calibrator App
	Camera Calibrator Overview
	Single Camera Calibration
	Open the Camera Calibrator
	Prepare the Pattern, Camera, and Images
	Add Images and Select Camera Model
	Calibrate
	Evaluate Calibration Results
	Improve Calibration
	Export Camera Parameters

	Stereo Camera Calibrator App
	Stereo Camera Calibrator Overview
	Stereo Camera Calibration
	Open the Stereo Camera Calibrator
	Prepare Pattern, Camera, and Images
	Add Image Pairs
	Calibrate
	Evaluate Calibration Results
	Improve Calibration
	Export Camera Parameters

	What Is Camera Calibration?
	Camera Models
	Pinhole Camera Model
	Camera Calibration Parameters
	Distortion in Camera Calibration

	Structure from Motion
	Structure from Motion from Two Views
	Structure from Motion from Multiple Views

	Object Detection
	Getting Started with SSD Multibox Detection
	Predict Objects in the Image
	Transfer Learning
	Design an SSD Detection Network
	Train an Object Detector and Detect Objects with an SSD Model
	Code Generation
	Label Training Data for Deep Learning

	Getting Started with Object Detection Using Deep Learning
	Create Training Data for Object Detection
	Create Object Detection Network
	Train Detector and Evaluate Results
	Detect Objects Using Deep Learning Detectors

	How Labeler Apps Store Exported Pixel Labels
	Location of Pixel Label Data Folder
	View Exported Pixel Label Data
	Examples

	Anchor Boxes for Object Detection
	What Is an Anchor Box?
	Advantage of Using Anchor Boxes
	How Do Anchor Boxes Work?
	Anchor Box Size

	Getting Started with YOLO v2
	Predicting Objects in the Image
	Transfer Learning
	Design a YOLO v2 Detection Network
	Train an Object Detector and Detect Objects with a YOLO v2 Model
	Code Generation
	Label Training Data for Deep Learning

	Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN
	Object Detection Using R-CNN Algorithms
	Comparison of R-CNN Object Detectors
	Transfer Learning
	Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model
	Label Training Data for Deep Learning

	Getting Started with Semantic Segmentation Using Deep Learning
	Train a Semantic Segmentation Network
	Label Training Data for Semantic Segmentation

	Training Data for Object Detection and Semantic Segmentation
	Create Automation Algorithm for Labeling
	Create New Algorithm
	Import Existing Algorithm
	Custom Algorithm Execution

	Label Pixels for Semantic Segmentation
	Start Pixel Labeling
	Label Pixels Using Flood Fill Tool
	Label Pixels Using Smart Polygon Tool
	Label Pixels Using Polygon Tool
	Label Pixels Using Assisted Freehand Tool
	Replace Pixel Labels
	Refine Labels Using Brush Tool
	Visualize Pixel Labels
	Tips

	Get Started with the Image Labeler
	Load Unlabeled Data
	Create Label Definitions
	Label Ground Truth
	Export Labeled Ground Truth
	Save App Session

	Choose an App to Label Ground Truth Data
	Get Started with the Video Labeler
	Load Unlabeled Data
	Set Time Interval to Label
	Create Label Definitions
	Label Ground Truth
	Export Labeled Ground Truth
	Label Data
	Save App Session

	Use Custom Image Source Reader for Labeling
	Create Custom Reader Function
	Import Data Source into Video Labeler App
	Import Data Source into Ground Truth Labeler App

	Use Sublabels and Attributes to Label Ground Truth Data
	When to Use Sublabels vs. Attributes
	Draw Sublabels
	Copy and Paste Sublabels
	Delete Sublabels
	Sublabel Limitations

	Temporal Automation Algorithms
	Create Temporal Automation Algorithm
	Run Temporal Automation Algorithm

	View Summary of Ground Truth Labels
	View Label Summary
	Compare Selected Labels

	Share and Store Labeled Ground Truth Data
	Share Ground Truth
	Move Ground Truth
	Store Ground Truth

	Keyboard Shortcuts and Mouse Actions for Image Labeler
	Label Definitions
	Image Browsing and Selection
	Labeling Window
	Polyline Drawing
	Polygon Drawing
	Zooming
	App Sessions

	Keyboard Shortcuts and Mouse Actions for Video Labeler
	Label Definitions
	Frame Navigation and Time Interval Settings
	Labeling Window
	Polyline Drawing
	Polygon Drawing
	Zooming
	App Sessions

	Point Feature Types
	Functions That Return Points Objects
	Functions That Accept Points Objects

	Local Feature Detection and Extraction
	What Are Local Features?
	Benefits and Applications of Local Features
	What Makes a Good Local Feature?
	Feature Detection and Feature Extraction
	Choose a Feature Detector and Descriptor
	Use Local Features
	Image Registration Using Multiple Features

	Train a Cascade Object Detector
	Why Train a Detector?
	What Kinds of Objects Can You Detect?
	How Does the Cascade Classifier Work?
	Create a Cascade Classifier Using the trainCascadeObjectDetector
	Troubleshooting
	Examples
	Train Stop Sign Detector

	Train Optical Character Recognition for Custom Fonts
	Open the OCR Trainer App
	Train OCR
	App Controls

	Troubleshoot ocr Function Results
	Performance Options with the ocr Function

	Create a Custom Feature Extractor
	Example of a Custom Feature Extractor

	Image Retrieval with Bag of Visual Words
	Retrieval System Workflow
	Evaluate Image Retrieval

	Image Classification with Bag of Visual Words
	Step 1: Set Up Image Category Sets
	Step 2: Create Bag of Features
	Step 3: Train an Image Classifier With Bag of Visual Words
	Step 4: Classify an Image or Image Set

	Semantic Segmentation With Deep Learning
	Analyze Training Data for Semantic Segmentation
	Create a Semantic Segmentation Network
	Train A Semantic Segmentation Network
	Evaluate and Inspect the Results of Semantic Segmentation
	Import Pixel Labeled Dataset For Semantic Segmentation

	Faster R-CNN Examples
	Create R-CNN Object Detection Network
	Create Fast R-CNN Object Detection Network
	Create Faster R-CNN Object Detection Network

	Motion Estimation and Tracking
	Multiple Object Tracking
	Detection
	Prediction
	Data Association
	Track Management

	Video Mosaicking
	Pattern Matching
	Pattern Matching

	Geometric Transformations
	Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods
	Nearest Neighbor Interpolation
	Bilinear Interpolation
	Bicubic Interpolation

	Filters, Transforms, and Enhancements
	Adjust the Contrast of Intensity Images
	Adjust the Contrast of Color Images
	Remove Salt and Pepper Noise from Images
	Sharpen an Image

	Statistics and Morphological Operations
	Correct Nonuniform Illumination
	Count Objects in an Image

	Fixed-Point Design
	Fixed-Point Signal Processing
	Fixed-Point Features
	Benefits of Fixed-Point Hardware
	Benefits of Fixed-Point Design with System Toolboxes Software

	Fixed-Point Concepts and Terminology
	Fixed-Point Data Types
	Scaling
	Precision and Range

	Arithmetic Operations
	Modulo Arithmetic
	Two's Complement
	Addition and Subtraction
	Multiplication
	Casts

	Fixed-Point Support for MATLAB System Objects
	Getting Information About Fixed-Point System Objects
	Setting System Object Fixed-Point Properties

	Specify Fixed-Point Attributes for Blocks
	Fixed-Point Block Parameters
	Specify System-Level Settings
	Inherit via Internal Rule
	Specify Data Types for Fixed-Point Blocks

	Code Generation and Shared Library
	Simulink Shared Library Dependencies
	Accelerating Simulink Models
	Portable C Code Generation for Functions That Use OpenCV Library
	Limitations

